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Abstract
The Interspeech 2015 Zero Resource Speech Challenge aims at
discovering subword and word units from raw speech. The chal-
lenge provides the first unified and open source suite of evalu-
ation metrics and data sets to compare and analyse the results
of unsupervised linguistic unit discovery algorithms. It consists
of two tracks. In the first, a psychophysically inspired evalua-
tion task (minimal pair ABX discrimination) is used to assess
how well speech feature representations discriminate between
contrastive subword units. In the second, several metrics gauge
the quality of discovered word-like patterns. Two data sets are
provided, one for English, one for Xitsonga. Both data sets are
provided without any annotation except for voice activity and
talker identity. This paper introduces the evaluation metrics,
presents the results of baseline systems and discusses some of
the key issues in unsupervised unit discovery.
Index Terms: zero resource speech challenge, feature extrac-
tion, unsupervised term discovery, new paradigms

1. Introduction
During their first year of life, infants construct acoustic and lan-
guage models for speech recognition in a robust and largely un-
supervised way. Current speech technology is incapable of such
a feat, and remains dominated by supervised learning paradigms
that rely on massive amounts of human generated linguistic la-
bels. It is time to address this discrepancy by setting up the
rather extreme situation in which a whole language has to be
learned from scratch. We expect that doing so will impact the
speech and language technology field by providing adaptable al-
gorithms that can supplement supervised systems when human
annotated corpora are scarce or nonexistent, as well as aid infant
language acquisition research by providing scalable quantitative
models that can be compared to psycholinguistic data.

This challenge covers two levels of linguistic structure:
subword units (Track 1) and word units (Track 2). These two
levels have already been investigated in previous work (see
[1, 2, 3, 4, 5, 6, 7], and [8, 9, 10, 11], respectively), but the per-
formance of the different systems has not yet been compared
using common evaluation metrics and data sets.

The aim of Track 1 (unsupervised subword modeling) is to
construct a representation of speech sounds which can support
word identification both within and across talkers. We use the
ABX discriminability between phonemic minimal pairs (e.g.

* These authors contributed equally to this work.

“beg” and “bag”) as an indicator of separability of sound cate-
gories in the representation (see [12, 13]). We aggregate a score
over the entire set of phone triplet minimal pairs in the corpus
and analyze separately within- and between-talker variation.

The aim of Track 2 (spoken term discovery) is the unsuper-
vised discovery of word-like units, defined as recurring speech
fragments. The systems take raw speech as input and output a
list of speech fragments (timestamps indicating intervals in the
original audio files) together with a discrete label for category
membership. The evaluation uses the suite of metrics described
in [14], which enables the detailed assessment of the differ-
ent components of a spoken term discovery pipeline (matching,
clustering, segmentation, parsing) and supports a direct com-
parison with NLP models of unsupervised word segmentation.

2. Data sets

Two data sets are provided in the challenge to test the partic-
ipants’ systems. The data sets are composed of selected seg-
ments from two free and open access data sets, the Buckeye
Corpus [15] in American English, and the NCHLT Speech Cor-
pus of Xitsonga [16]. The datasets are deliberately chosen to be
small, keeping in mind the high computational demands zero
resource systems typically pose. The Buckeye corpus consists
of casual conversational speech. Twelve speakers were selected
from the corpus (six male and six female, six young and six old)
that had the highest common use of words. Of each speaker,
between 16 and 30 minutes (µ = 24.16) of speech were se-
lected (for a total of 4h59m05s), such that they contained no
speech overlap with the interviewer, no speaker noise and no
pauses. Segments that contained boundary mismatches between
the phone and word level annotation were similarly excluded.
The section of the NCHLT corpus that was used consists of read
speech recorded by 24 speakers (12 male, 12 female). Of each
speaker, between 2 and 29 minutes were selected (µ = 13.16)
with the same criteria as for the Buckeye corpus, for a total of
2h29m07s. For both corpora, the selected segments were pro-
vided to the participants and the remaining portions of the cor-
pus were declared non-speech. Each segment or file contained
speech for only one speaker and this information as well as the
speaker identity was also provided. The evaluation was based
on forced aligned intervals for the phonemes in the corpora, but
this information was not communicated to the participants.
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3. Evaluation Metrics
The main aim of this challenge is to generate knowledge about
the mechanisms that underly unsupervised language learning.
As a result, for evaluation, we do not use a single applicative
task, but rather multiple evaluation metrics, each one designed
to characterize a particular subproblem or component of lin-
guistic unit discovery. All the metrics use open source software
libraries, some of which are developed in-house. See [17] for
Track 1 and [18] for Track 2.

3.1. Track 1

Unsupervised subword modeling can be defined as the task of
finding speech features that emphasize linguistically relevant
properties of the speech signal (phoneme structure) and de-
emphasize the linguistically irrelevant ones (speaker identity,
emotion, channel, etc). Some approaches to this task use unsu-
pervised clustering at the frame level using GMM’s [2, 3]. Other
approaches model phones as frame sequences, with a GMM-
HMM architecture similar to those used in typical supervised
systems (eg. [5, 4, 7]). Yet other approaches use Deep Neural
Net (DNN) architectures with unsupervised or weakly super-
vised loss functions to learn phone-level embeddings [1, 6, 19].
Importantly, the output of these systems can be in many differ-
ent formats: transcription in discrete categories, lattices, poste-
riorgrams, continuous vector embeddings, etc. This raises the
problem of a fair evaluation of these models that would not be
biased in favor of one format or other.

Typically, subword models are evaluated by training a clas-
sifier to decode the representation into phoneme sequences and
evaluating these against a gold transcription. A major problem
with this approach is that representations that are easily separa-
ble on the basis of labeled examples can be indiscriminable in
the absence of those labels. This means that defects in a rep-
resentation that would be fatal if it was to be used as part of a
zero-resource system can be unduly corrected by an evaluation
metric based on supervised classifiers. Another problem is that
the final score is a compound of the quality of the representa-
tion and the quality of the decoder. Since the representations
all vary in terms of number of dimensions, sparsity and other
statistical properties, it is unclear how a single decoder would
be fair to all of the above models. Here, we will use a minimal
pair ABX task [12, 13], which does not require any training, and
only requires a notion of distance between the representations
of speech segments.

The ABX task is inspired by match-to-sample tasks used
in human psychophysics and is a simple way to measure dis-
criminability between two sound categories (where the sounds
A and B belong to different categories x and y, respectively,
and the task is to decide whether the sound X belongs to one
or the other). Specifically, we define the ABX-discriminability
of category x from category y as the probability that A and X
are further apart than B and X when A and X are from cate-
gory x and B is from category y, according to some distance d
over the (model-dependent) space of featural representations for
these sounds. Given two sets of featural representations that we
wish to evaluate, S(x) and S(y) from category x and y respec-
tively, we estimate this probability using the following formula:

1

m(m− 1)n

∑
a∈S(x)

∑
b∈S(y)

∑
x∈S(x)\{a}

(1d(a,x)<d(b,x) +
1

2
1d(a,x)=d(b,x))

(1)

where m and n are the number of sounds in S(x) and S(y) and
1 is the indicator function. As the probability defined above is
asymmetric in the two categories, we obtain a symmetric mea-
sure by taking the average of the ABX discriminability of x
from y and of y from x. The default distances provided in
this challenge are based on DTW divergences with the under-
lying frame-level distance being either cosine distance or KL-
divergence. For most systems (signal processing, embeddings)
the cosine distance usually gives good results, and for others
(posteriorgrams) the KL distance is more appropriate. Contes-
tants are allowed to supply their own distance function as long
as it was not obtained through supervised training.

We focus on minimal pairs, the smallest difference in
speech sound which makes a semantic difference (e.g. “beg” vs
“bag”), as they represent the hardest problem that a speech rec-
ognizer may solve. Since there are typically not enough word
minimal pairs in a small corpus to do this kind of analysis, we
use phone triplet minimal pairs, i.e. sequences of 3 phonemes
that differ in the central sound (e.g. “beg”-“bag”, “api”-“ati”,
etc). Our compound measure sums over all minimal pairs of this
type found in the corpus in a structured manner, that depends
on the task. For the within-speaker task, all of the phone triplets
belong to the same speaker (e.g. A = begT1, B = bagT1,
X = bag′

T1). The scores for a given minimal pair are first av-
eraged across all of the speakers for which this minimal pair
exists. The resulting scores are then averaged over all found
contexts for a given pair of central phones (e.g. for the pair /a/-
/e/, average the scores for the existing contexts such as /b g/,
/r d/, /f s/, etc.). Finally the scores for every pair of central
phones are averaged and subtracted from 1 to yield the reported
within-talker ABX error rate. For the across-speaker task, A
and B belong to the same speaker, and X to a different one.
A = begT1, B = bagT1, X = bagT2. The scores for a given
minimal pair are first averaged across all of the pairs of speak-
ers for which this contrast can be made. As above, the resulting
scores are then averaged over all contexts for each possible pair
of central phones and finally over all pairs of central phones
before being converted to an error rate.

3.2. Track 2

The process of spoken term discovery can be broken down into
a series of three operations, which can be all evaluated inde-
pendently (see Figure 1). The first step consists of matching

Figure 1: Logical components of a spoken term discovery sys-
tem
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pairs of stretches of speech on the basis of their similarity. The
second step consists in clustering the matching pairs, thereby
building a library of classes with potentially many instances.
This can be seen as the equivalent of building a lexicon. In the
third step, the system can use its acquired classes to parse the
continuous stream into candidate tokens and boundaries. Some
systems may only implement some of these steps, others may
do them simultaneously rather than sequentially. The metrics
below have been devised to enable comparisons between sys-
tems that may implement any or all of these steps by evaluating
them separately. Each of them represents a different view of
the performance of a term discovery system, highlighting the
different operations in Figure 1.

All of the metrics assume a time aligned transcription,
where Ti,j is the (phoneme) transcription corresponding to the
speech fragment designated by the pair of indices [i, j] (i.e., the
speech fragment between time points i and j). If the left or right
edge of the fragment contains part of a phoneme, that phoneme
is included in the transcription if it corresponds to more than
more than 30ms or more than 50% of its duration.

Define Cdisc to be the set of discovered pattern clusters (a
cluster being a set of fragments). Then define the following
sets, containing the gold supervision:

Fall = {〈i, j〉 ∈ N× N |
1 ≤ i ≤ j ≤ n, 3 ≤ j − i+ 1 ≤ 20} (2)

Pall = {〈〈i, j〉, 〈k, l〉〉 ∈ Fall × Fall |
Ti,j = Tk,l, [i, j] ∩ [k, l] = ∅} (3)

Pgoldclus = {〈〈i, j〉, 〈k, l〉〉 ∈ Fall × Fall |
∃c1, c2 ∈ Cdisc : 〈i, j〉 ∈ c1, 〈k, l〉 ∈ c2
Ti,j = Tk,l, [i, j] ∩ [k, l] = ∅} (4)

PgoldLex = {〈〈i, j〉, 〈k, l〉〉 ∈ Fall × Fall |
Ti,j = Tk,l, [i, j] ∩ [k, l] = ∅,
{i, j, k, l} ⊆ cover(Pdisc)} (5)

Next, derive the set of discovered fragments Fdisc, discov-
ered fragment pairs Pdisc and discovered boundaries Bdisc:

Fdisc = {f | f ∈ c, c ∈ Cdisc} (6)
Pdisc = {〈f1, f2〉 | f1 6= f2 ∈ c, c ∈ Cdisc} (7)
Bdisc = {i | ∃j : 〈i, j〉 ∈ Fdisc ∧ 〈j, i〉 ∈ Fdisc} (8)

Lastly, define the set Pdisc* to be the pairwise substring com-
pletion of Pdisc, i.e. for every pair in Pdisc*, all alignments
of substrings of at least three phones are also in Pdisc*, e.g.
for fragment pair 〈abcd, efgh〉, add 〈abcd, efgh〉, 〈abcd, efg〉,
〈abcd, fgh〉, 〈abc, efgh〉, 〈abc, efg〉, 〈abc, fgh〉, 〈bcd, efgh〉,
〈bcd, efg〉, and 〈bcd, fgh〉. The rationale for adding these sub-
strings is to not unduly punish a system for partially discovered
phone sequences in the metrics below.

Matching quality. Many spoken term discovery systems
incorporate a step in which fragments of speech are realigned
and compared. Matching quality measures the accuracy of this
process. Two sets of metrics evaluate this: Normalized Edit
Distance (NED) & Coverage, and Matching f-score.

NED and Coverage are quick to compute and give a quali-
tative estimate of the matching step. The normalized Edit Dis-
tance between a pair of fragments is equal to zero when they
have exactly the same transcription, and 1 when they differ in
all phonemes. Coverage is the fraction of the corpus that is cov-
ered by the discovered fragments.

NED =
∑

〈x,y〉∈Pdisc

ned(x, y)

|Pdisc|
(9)

Coverage =
|cover(Pdisc)|
|cover(Pall)|

(10)

where

ned(〈i, j〉, 〈k, l〉) =
Levenshtein(Ti,j , Tk,l)

max(j − i+ 1, k − l + 1)
(11)

cover(P ) =
⋃

〈i,j〉∈flat(P )

[i, j] (12)

The Matching metrics are more exhaustive, but require
more computation. They compare X = Pdisc* the set of dis-
covered pairs (with substring completion) to Y = Pall the set of
all possible gold pairs. The precision and recall are computed
over each type of pairs, and averaged after reweighting by the
frequency of the pair.

prec =
∑

t∈types(Pdisc*)

w(t, Pdisc*)
|#occ(t, Pdisc* ∩ Pall)|
|#occ(t, Pdisc*)|

(13)

recall =
∑

t∈types(Pall)

w(t, Pall)
|#occ(t, Pdisc* ∩ Pall)|
|#occ(t, Pall)|

(14)

where

types(F ) = {Ti,j | 〈i, j〉 ∈ flat(F )} (15)
flat(P ) = {p | ∃q : 〈p, q〉 ∈ P or 〈q, p〉 ∈ P} (16)

#occ(t, P ) = {〈i, j〉 ∈ flat(P ) | Ti,j = t} (17)

w(t, P ) =
|#occ(t, P )|
|flat(P )| (18)

Clustering quality is evaluated using two metrics. The first
set of metrics, Grouping, computes the intrinsic quality of the
clusters in terms of their phonetic composition. This score is
equivalent to the purity and inverse purity scores used for eval-
uating clustering. As the Matching score, it is computed over
pairs, but contrary to the Matching scores, it focusses on the
covered part of the corpus.

prec =
∑

t∈types(Pclus)

w(t, Pclus)
|#occ(t, Pclus ∩ Pgoldclus)|

|#occ(t, Pclus)|

(19)

recall =
∑

t∈types(Pgoldclus)

w(t, Pgoldclus)
|#occ(t, Pclus ∩ Pgoldclus)|
|#occ(t, Pgoldclus)|

(20)

The second set of metrics, Type, takes as the gold cluster
set the true lexicon and is therefore much more demanding of
the systems, requiring them to find actual words and not just
“word-like” patterns:

prec =
|types(Fdisc) ∩ types(FgoldLex)|

|types(Fdisc)|
(21)

recall =
|types(Fdisc) ∩ types(FgoldLex)|

|types(FgoldLex)|
(22)
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Table 1: Baseline and topline results on all the metrics for Track 2. The baseline system is a spoken term discovery system on PLP
features. The topline is a unigram adaptor grammar run on phoneme sequences from the gold transcription.

Matching Grouping Type Token Boundary
NED Cov P R F P R F P R F P R F P R F

English
Baseline 0.219 0.163 0.394 0.016 0.031 0.214 0.846 0.333 0.062 0.019 0.029 0.055 0.004 0.080 0.441 0.047 0.086
Topline 0.000 1.000 0.983 0.185 0.311 0.995 1.000 0.997 0.503 0.562 0.531 0.682 0.608 0.643 0.884 0.867 0.875

Xitsonga
Baseline 0.120 0.162 0.691 0.003 0.005 0.521 0.774 0.622 0.032 0.014 0.020 0.026 0.005 0.008 0.223 0.056 0.089
Topline 0.000 1.000 1.000 0.068 0.127 1.000 1.000 1.000 0.151 0.181 0.165 0.341 0.497 0.404 0.666 0.919 0.772

Parsing quality is evaluated using two metrics. The first
one, Token, evaluates if word tokens were correctly segmented:

prec =
|Fdisc ∩ FgoldLex|
|Fdisc|

(23)

recall =
|Fdisc ∩ FgoldLex|
|FgoldLex|

(24)

The second metric for parsing quality, Boundary, evaluates
how many of the gold word boundaries were found:

prec =
|Bdisc ∩Bgold|
|Bdisc|

(25)

recall =
|Bdisc ∩Bgold|
|Bgold|

(26)

4. Baseline and Topline results
In order to provide a sense of the scale of variation of the dif-
ferent metrics we used, we provide baseline and topline results
for the two tracks. For Track 1, the results are shown in Ta-
ble 2. As baseline, we used 13 MFCC features, computed over
25ms windows with a 10ms window shift and cosine as the pair-
wise frame distance. As topline, we used posteriorgrams ex-
tracted from a Kaldi GMM-HMM pipeline with triphone states,
speaker adaptation and a bigram word LM (for details, see [20]).
The acoustic and language models were trained on the part of
the corpora not used in the evaluation. The same Kaldi recipe
was used for the two languages. On the evaluation sets, it gave
a phone error rate (PER) of 26.4% for English, and 7.5% for
Xitsonga. The ABX scores were calculated using DTW with
KL-divergence on the systems’ posteriors.

For the baseline, we found comparable results across the
two languages, with performance within talker better than
across talkers, due to the fact that MFCCs are not speaker in-
variant. For the topline, we found much better results for the
Xitsonga than the English datasets. This is in line with the fact
that the former is read speech, whereas the latter is casual con-
versational speech. There, the difference between within and
across talkers was much reduced, reflecting the fact that after su-
pervised training, the system’s posteriors almost achieve talker
invariance. The systems in the challenge are expected to fall in
between the performance of these two systems, although it may
be possible to reach the topline.

For Track 2, the baseline and topline results are shown in
Table 1. As baseline, we used the word discovery system de-
scribed in [8] run on PLP features. It performs DTW matching
and uses random projections for increased efficiency, and con-
nected component clustering as a second step. The topline is a
unigram Adaptor Grammar [21] run on the gold phoneme tran-
scription. This topline performance is probably not attainable
by unsupervised systems since it uses the gold transcription.

Table 2: Within and across talker ABX minimal pair distrimina-
tion error rate (Track 1) for the Baseline (MFCC) and Topline
(supervised HMM-GMM posteriorgrams).

English Xitsonga

within across within across
Baseline 15.6 28.1 19.1 33.8
Topline 12.1 16.0 3.5 4.5

The performance metrics for the baseline system give an
idea of the kind of performance that one can obtain with a spo-
ken term discovery system run on standard speech features. For
both languages, the NED was between 22% and 12%, and the
coverage was only around 16% of the corpus. This baseline
system is evidently weighted in favor of high precision and
low coverage/recall as confirmed by the matching metrics. In
terms of clustering, however, the system has a rather high recall,
which corresponds to cluster collocation. In other words, the
clusters contain several words, but each word tends to be in only
one or very few clusters. As expected, the NLP type and token
metrics are not very good for a system that does not attempt to
optimize a lexicon. However, the boundary precision figures are
reasonably high (between 22% and 44%). The topline gives an
idea of what one could obtain with perfect speech features (or-
acle phoneme transcription), and a lexical optimization system.
Here, the matching and grouping statistics are at ceiling (note
however that the matching recall is not at 100%, since the sys-
tem only finds units that are exactly one word long, and there-
fore fails to return repeated fragments that are larger than a word
(“the dog”) or straddle two words (“the do”). The type/token
and boundary scores are within the expected values for NLP
system with better performances for English.

5. Conclusions
We presented the Zero Speech Challenge 2015, which is the first
one to unify the unsupervised discovery of linguistic units under
a common methodology. In this early phase of the field, intead
of focussing on a single application or metric, we preferred to
keep the challenge application neutral, and therefore provided a
multitude of evaluation metrics.
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