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Théorie de l’apprentissage : 
TLDR

High-dimensional statistics : non asymptotic


• Bias-variance decomposition of risk (same approach as in classical case)


• Explicit computation impossible for typical ML problems


• Upper bounding : 


• bias : Rademacher (or Gaussian) averages


• variance : concentration inequalities


High-dimensional statistics : asymptotic


• Different asymptotic regimes, e.g. n -> +∞ et n/p -> constante


Deep learning theory? 


• Over-parametrisation + SGD -> computationally tractable minimum-norm interpolation?


• Good generalisation properties of minimum-norm interpolations?
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In a similar manner, when given a set of realizations {⇠[i]}ni=1 of ⇠ corresponding to a sample set
{(xi, yi)}ni=1, let us define the loss incurred by the parameter vector w with respect to the ith sample
as

fi(w) := f(w; ⇠[i]), (3.5)

and then write the empirical risk as the average of the sample losses:

(Empirical Risk) Rn(w) =
1

n

nX

i=1

fi(w). (3.6)

For future reference, we use ⇠[i] to denote the ith element of a fixed set of realizations of a random
variable ⇠, whereas, starting in §4, we will use ⇠k to denote the kth element of a sequence of random
variables.

3.2 Stochastic vs. Batch Optimization Methods

Let us now introduce some fundamental optimization algorithms for minimizing risk. For the
moment, since it is the typical setting in practice, we introduce two algorithm classes in the context
of minimizing the empirical risk measure Rn in (3.6). Note, however, that much of our later
discussion will focus on the performance of algorithms when considering the true measure of interest,
namely, the expected risk R in (3.4).

Optimization methods for machine learning fall into two broad categories. We refer to them as
stochastic and batch. The prototypical stochastic optimization method is the stochastic gradient
method (SG) [130], which, in the context of minimizing Rn and with w1 2 Rd given, is defined by

wk+1  wk � ↵krfik(wk). (3.7)

Here, for all k 2 N := {1, 2, . . . }, the index ik (corresponding to the seed ⇠[ik], i.e., the sample pair
(xik , yik)) is chosen randomly from {1, . . . , n} and ↵k is a positive stepsize. Each iteration of this
method is thus very cheap, involving only the computation of the gradient rfik(wk) corresponding
to one sample. The method is notable in that the iterate sequence is not determined uniquely by the
function Rn, the starting point w1, and the sequence of stepsizes {↵k}, as it would in a deterministic
optimization algorithm. Rather, {wk} is a stochastic process whose behavior is determined by the
random sequence {ik}. Still, as we shall see in our analysis in §4, while each direction �rfik(wk)
might not be one of descent from wk (in the sense of yielding a negative directional derivative for
Rn from wk), if it is a descent direction in expectation, then the sequence {wk} can be guided
toward a minimizer of Rn.

For many in the optimization research community, a batch approach is a more natural and well-
known idea. The simplest such method in this class is the steepest descent algorithm—also referred
to as the gradient, batch gradient, or full gradient method—which is defined by the iteration

wk+1  wk � ↵krRn(wk) = wk �
↵k

n

nX

i=1

rfi(wk). (3.8)

Computing the step �↵krRn(wk) in such an approach is more expensive than computing the step
�↵krfik(wk) in SG, though one may expect that a better step is computed when all samples are
considered in an iteration.
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Exemple de garantie de convergence
arbitrarily small by selecting a small stepsize, but doing so reduces the speed at which the norm of
the gradient approaches its limiting distribution.

We now turn to the case when the SG method is applied to a nonconvex objective with a
decreasing sequence of stepsizes satisfying the classical conditions (4.19). While not the strongest
result that one can prove in this context—and, in fact, we prove a stronger result below—the
following theorem is perhaps the easiest to interpret and remember. Hence, we state it first.

Theorem 4.9 (Nonconvex Objective, Diminishing Stepsizes). Under Assumptions 4.1 and
4.3, suppose that the SG method (Algorithm 4.1) is run with a stepsize sequence satisfying (4.19).
Then

lim inf
k!1

E[krF (wk)k22] = 0 . (4.29)

The proof of this theorem follows based on the results given in Theorem 4.10 below. A “lim inf”
result of this type should be familiar to those knowledgeable of the nonlinear optimization litera-
ture. After all, such a result is all that can be shown for certain important methods, such as the
nonlinear conjugate gradient method [114]. The intuition that one should gain from the statement
of Theorem 4.9 is that, for the SG method with diminishing stepsizes, the expected gradient norms
cannot stay bounded away from zero.

The following result characterizes more precisely the convergence property of SG.

Theorem 4.10 (Nonconvex Objective, Diminishing Stepsizes). Under Assumptions 4.1 and
4.3, suppose that the SG method (Algorithm 4.1) is run with a stepsize sequence satisfying (4.19).
Then, with AK :=

P
K

k=1 ↵k,

lim
K!1

E
"

KX

k=1

↵kkrF (wk)k22

#
< 1 (4.30a)

and therefore E
"

1

AK

KX

k=1

↵kkrF (wk)k22

#
K!1����! 0. (4.30b)

Proof. The second condition in (4.19) ensures that {↵k} ! 0, meaning that, without loss of gen-
erality, we may assume that ↵kLMG  µ for all k 2 N. Then, taking the total expectation of
(4.10b),

E[F (wk+1)] � E[F (wk)]  �(µ� 1
2↵kLMG)↵k E[krF (wk)k22] + 1

2↵
2
k
LM

 �1
2µ↵kE[krF (wk)k22] + 1

2↵
2
k
LM .

Summing both sides of this inequality for k 2 {1, . . . ,K} gives

Finf � E[F (w1)]  E[F (wK+1)] � E[F (w1)]  �1
2µ

KX

k=1

↵kE[krF (wk)k22] + 1
2LM

KX

k=1

↵
2
k
.

Dividing by µ/2 and rearranging the terms, we obtain

KX

k=1

↵kE[krF (wk)k22]  2(E[F (w1)] � Finf)

µ
+

LM

µ

KX

k=1

↵
2
k
.

The second condition in (4.19) implies that the right-hand side of this inequality converges to a
finite limit when K increases, proving (4.30a). Then, (4.30b) follows since the first condition in
(4.19) ensures that AK ! 1 as K ! 1.
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of stepsize decrease, we may invoke Theorem 4.6, from which it follows that to achieve the first
bound in (4.17) one needs

(1 � ↵rcµ)(kr+1�kr)(4F↵r
� F↵r

)  F↵r

=) kr+1 � kr �
log(1/3)

log(1 � ↵rcµ)
⇡ log(3)

↵rcµ
= O(2r).

(4.18)

In other words, each time the stepsize is cut in half, double the number of iterations are required.
This is a sublinear rate of stepsize decrease—e.g., if {kr} = {2r�1}, then ↵k = ↵1/k for all k 2
{2r}—which, from {F↵r

} = {↵rLM

2cµ } and (4.17), means that a sublinear convergence rate of the
suboptimality gap is achieved.
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Fig. 4.1: Depiction of the strategy of halving the stepsize ↵ when the expected suboptimality gap
is smaller than twice the asymptotic limit F↵. In the figure, the segment B–B0 has one third of the
length of A–A0. This is the amount of decrease that must be made in the exponential term in (4.14)
by raising the contraction factor to the power of the number of steps during which one maintains
a given constant stepsize; see (4.18). Since the contraction factor is (1�↵cµ), the number of steps
must be proportional to ↵. Therefore, whenever the stepsize is halved, one must maintain it twice
as long. Overall, doubling the number of iterations halves the suboptimality gap each time, yielding
an e↵ective rate of O(1/k).

In fact, these conclusions can be obtained in a more rigorous manner that also allows more
flexibility in the choice of stepsize sequence. The following result harks back to the seminal work
of Robbins and Monro [130], where the stepsize requirement takes the form

1X

k=1

↵k = 1 and
1X

k=1

↵
2
k
< 1. (4.19)

Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes). Under Assumptions 4.1,
4.3, and 4.5 (with Finf = F⇤), suppose that the SG method (Algorithm 4.1) is run with a stepsize
sequence such that, for all k 2 N,

↵k =
�

� + k
for some � >

1

cµ
and � > 0 such that ↵1 

µ

LMG

. (4.20)
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4.1 Two Fundamental Lemmas

Our approach for establishing convergence guarantees for SG is built upon an assumption of smooth-
ness of the objective function. (Alternative foundations are possible; see Appendix A.) This, and
an assumption about the first and second moments of the stochastic vectors {g(wk, ⇠k)} lead to two
fundamental lemmas from which all of our results will be derived.

Our first assumption is formally stated as the following. Recall that, as already mentioned in
(4.1), F can stand for either expected or empirical risk.

Assumption 4.1 (Lipschitz-continuous objective gradients). The objective function F :
Rd ! R is continuously di↵erentiable and the gradient function of F , namely, rF : Rd ! Rd, is
Lipschitz continuous with Lipschitz constant L > 0, i.e.,

krF (w) �rF (w)k2  Lkw � wk2 for all {w,w} ⇢ Rd
.

Intuitively, Assumption 4.1 ensures that the gradient of F does not change arbitrarily quickly
with respect to the parameter vector. Such an assumption is essential for convergence analyses of
most gradient-based methods; without it, the gradient would not provide a good indicator for how
far to move to decrease F . An important consequence of Assumption 4.1 is that

F (w)  F (w) + rF (w)T (w � w) + 1
2Lkw � wk22 for all {w,w} ⇢ Rd

. (4.3)

This inequality is proved in Appendix B, but note that it also follows immediately if F is twice
continuously di↵erentiable and the Hessian function r2

F : Rd ! Rd⇥d satisfies kr2
F (w)k2  L

for all w 2 Rd.
Under Assumption 4.1 alone, we obtain the following lemma. In the result, we use E⇠k

[·] to
denote an expected value taken with respect to the distribution of the random variable ⇠k given wk.
Therefore, E⇠k

[F (wk+1)] is a meaningful quantity since wk+1 depends on ⇠k through the update in
Step 6 of Algorithm 4.1.

Lemma 4.2. Under Assumption 4.1, the iterates of SG (Algorithm 4.1) satisfy the following in-
equality for all k 2 N:

E⇠k
[F (wk+1)] � F (wk)  �↵krF (wk)

TE⇠k
[g(wk, ⇠k)] + 1

2↵
2
k
LE⇠k

[kg(wk, ⇠k)k22]. (4.4)

Proof. By Assumption 4.1, the iterates generated by SG satisfy

F (wk+1) � F (wk)  rF (wk)
T (wk+1 � wk) + 1

2Lkwk+1 � wkk22
 �↵krF (wk)

T
g(wk, ⇠k) + 1

2↵
2
k
Lkg(wk, ⇠k)k22.

Taking expectations in these inequalities with respect to the distribution of ⇠k, and noting that
wk+1—but not wk—depends on ⇠k, we obtain the desired bound.

This lemma shows that, regardless of how SG arrived at wk, the expected decrease in the
objective function yielded by the kth step is bounded above by a quantity involving: (i) the expected
directional derivative of F at wk along �g(xk, ⇠k) and (ii) the second moment of g(xk, ⇠k). For
example, if g(wk, ⇠k) is an unbiased estimate of rF (wk), then it follows from Lemma 4.2 that

E⇠k
[F (wk+1)] � F (wk)  �↵kkrF (wk)k22 + 1

2↵
2
k
LE⇠k

[kg(wk, ⇠k)k22]. (4.5)
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plus des conditions de régularité pas très contraignantes 

(cf. Bottou, Curtis et Nocedal (2018) Optimisation Methods for Large-Scale Machine Learning)
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These notes correspond to Sections 2.2-2.4 in the text.

Vector Norms

Given vectors x and y of length one, which are simply scalars x and y, the most natural notion of
distance between x and y is obtained from the absolute value; we de�ne the distance to be jx� yj.
We therefore de�ne a distance function for vectors that has similar properties.

A function k � k : Rn ! R is called a vector norm if it has the following properties:

1. kxk � 0 for any vector x 2 Rn, and kxk = 0 if and only if x = 0

2. k↵xk = j↵jkxk for any vector x 2 Rn and any scalar ↵ 2 R

3. kx+ yk  kxk+ kyk for any vectors x, y 2 Rn.

The last property is called the triangle inequality. It should be noted that when n = 1, the absolute
value function is a vector norm.

The most commonly used vector norms belong to the family of p-norms, or `p-norms, which
are de�ned by

kxkp =
 

nX

i=1

jxijp
!1=p

:

It can be shown that for any p > 0, k � kp de�nes a vector norm. The following p-norms are of
particular interest:

✏ p = 1: The `1-norm
kxk1 = jx1j+ jx2j+ � � �+ jxnj

✏ p = 2: The `2-norm or Euclidean norm

kxk2 =
q

x21 + x22 + � � �+ x2n =
p
xTx

✏ p = 1: The `1-norm
kxk1 = max

1in
jxij

1
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We therefore de�ne a distance function for vectors that has similar properties.

A function k � k : Rn ! R is called a vector norm if it has the following properties:

1. kxk � 0 for any vector x 2 Rn, and kxk = 0 if and only if x = 0

2. k↵xk = j↵jkxk for any vector x 2 Rn and any scalar ↵ 2 R

3. kx+ yk  kxk+ kyk for any vectors x, y 2 Rn.

The last property is called the triangle inequality. It should be noted that when n = 1, the absolute
value function is a vector norm.

The most commonly used vector norms belong to the family of p-norms, or `p-norms, which
are de�ned by

kxkp =
 

nX

i=1

jxijp
!1=p

:

It can be shown that for any p > 0, k � kp de�nes a vector norm. The following p-norms are of
particular interest:

✏ p = 1: The `1-norm
kxk1 = jx1j+ jx2j+ � � �+ jxnj

✏ p = 2: The `2-norm or Euclidean norm

kxk2 =
q
x21 + x22 + � � �+ x2n =

p
xTx

✏ p = 1: The `1-norm
kxk1 = max

1in
jxij
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1

It can be shown that the `2-norm satis�es the Cauchy-Bunyakovsky-Schwarz inequality

jxTyj  kxk2kyk2

for any vectors x, y 2 Rn. This inequality is useful for showing that the `2-norm satis�es the
triangle inequality. It is a special case of the Holder inequality

jxTyj  kxkpkykq;
1

p
+

1

q
= 1:

Now that we have de�ned various notions of the size, or magnitude, of a vector, we can discuss
distance and convergence. Given a vector norm k � k, and vectors x;y 2 Rn, we de�ne the distance
between x and y, with respect to this norm, by kx�yk. Then, we say that a sequence of n-vectors
fx(k)g1k=0 converges to a vector x if

lim
k!1

kx(k) � xk = 0:

That is, the distance between x(k) and x must approach zero. It can be shown that regardless of
the choice of norm, x(k) ! x if and only if

x(k)
i ! xi; i = 1; 2; : : : ; n:

That is, each component of x(k) must converge to the corresponding component of x. This is due
to the fact that for any vector norm k � k, kxk = 0 if and only if x is the zero vector.

Because we have de�ned convergence with respect to an arbitrary norm, it is important to know
whether a sequence can converge to a limit with respect to one norm, while converging to a di↵erent
limit in another norm, or perhaps not converging at all. Fortunately, for p-norms, this is never the
case. We say that two vector norms k � k↵ and k � k� are equivalent if there exists constants C1 and
C2, that are independent of x, such that for any vector x 2 Rn,

C1kxk↵  kxk�  C2kxk↵:

It follows that if two norms are equivalent, then a sequence of vectors that converges to a limit
with respect to one norm will converge to the same limit in the other. It can be shown that all
`p-norms are equivalent. In particular, if x 2 Rn, then

kxk2  kxk1 
p
nkxk2;

kxk1  kxk2 
p
nkxk1;

kxk1  kxk1  nkxk1:

2

Si Q est une matrice orthogonale,
kQxk2 = kxk2
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Normes de matricesMatrix Norms

It is also very useful to be able to measure the magnitude of a matrix, or the distance between
matrices. However, it is not su�cient to simply de�ne the norm of an m⇥n matrix A as the norm
of an mn-vector x whose components are the entries of A. We instead de�ne a matrix norm to be
a function k � k : Rm⇥n ! R that has the following properties:

✏ kAk � 0 for any A 2 Rm⇥n, and kAk = 0 if and only if A = 0

✏ k↵Ak = j↵jkAk for any m⇥ n matrix A and scalar ↵

✏ kA+Bk  kAk+ kBk for any m⇥ n matrices A and B

Another property that is often, but not always, included in the de�nition of a matrix norm is the
submultiplicative property: if A is m⇥ n and B is n⇥ p, we require that

kABk  kAkkBk:

This is particularly useful when A and B are square matrices.
Any vector norm induces a matrix norm. It can be shown that given a vector norm, de�ned

appropriately for m-vectors and n-vectors, the function k � k : Rm⇥n ! R de�ned by

kAk = sup
x 6=0

kAxk
kxk = max

kxk=1
kAxk

is a matrix norm. It is called the natural, or induced, matrix norm. Furthermore, if the vector
norm is a `p-norm, then the induced matrix norm satis�es the submultiplicative property.

The following matrix norms are of particular interest:

✏ The `1-norm:

kAk1 = max
kxk1=1

kAxk1 = max
1jn

mX

i=1

jaij j:

That is, the `1-norm of a matrix is its maximum column sum.

✏ The `1-norm:

kAk1 = max
kxk1=1

kAxk1 = max
1im

nX

j=1

jaij j:

That is, the `1-norm of a matrix is its maximum row sum.

✏ The `2-norm:
kAk2 = max

kxk2=1
kAxk2:

3

A matrix norm is
<latexit sha1_base64="an9TmklsyAV8iFGGxc7UAvvO82I="></latexit>
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That is, the `1-norm of a matrix is its maximum row sum.
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kAk2 = max

kxk2=1
kAxk2:

3

To obtain a formula for this norm, we note that the function

g(x) =
kAxk22
kxk22

has a local maximium or minimum whenever x is a unit `2-norm vector (that is, kxk2 = 1)
that satis�es

ATAx = kAxk22x;

as can be shown by di↵erentiation of g(x). That is, x is an eigenvector of ATA, with corre-
sponding eigenvalue kAxk22 = g(x). We conclude that

kAk2 = max
1in

q
�i(ATA):

That is, the `2-norm of a matrix is the square root of the largest eigenvalue of ATA, which is
guaranteed to be nonnegative, as can be shown using the vector 2-norm. We see that unlike
the vector `2-norm, the matrix `2-norm is much more di�cult to compute than the matrix
`1-norm or `1-norm.

✏ The Frobenius norm:

kAkF =

0

@
mX

i=1

nX

j=1

a2ij

1

A
1=2

:

It should be noted that the Frobenius norm is not induced by any vector `p-norm, but it
is equivalent to the vector `2-norm in the sense that kAkF = kxk2 where x is obtained by
reshaping A into a vector.

Like vector norms, matrix norms are equivalent. For example, if A is an m⇥ n matrix, we have

kAk2  kAkF 
p
nkAk2;

1p
n
kAk1  kAk2 

p
mkAk1;

1p
m
kAk1  kAk2 

p
nkAk1:

Eigenvalues and Eigenvectors

We have learned what it means for a sequence of vectors to converge to a limit. However, using
the de�nition alone, it may still be di�cult to determine, conclusively, whether a given sequence of

4

kAk2 = �1
<latexit sha1_base64="opGBHN4lGnJfDT5ewFbv/cvPbYg="></latexit>

kAkF =
p
�2
1 + · · ·+ �2

r
<latexit sha1_base64="BWO/iplSRl/3lbYc9SZIX/AprQU="></latexit>
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Application de la notion de norme: lien 
valeurs propres, valeurs singulières

�r  |�|  �1
<latexit sha1_base64="QM922EdLHN9i7I6CCUUU/iCbr64="></latexit>
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�r  |�|  �1
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Éléments propres de ATA et AAT ?
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Application de la notion de norme: lien 
valeurs propres, valeurs singulières
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56 Highlights of Linear Algebra 

1.8 Singular Values and Singular Vectors in the SVD 
The best matrices (real symmetric matrices S) have real eigenvalues and orthogonal 
eigenvectors. But for other matrices, the eigenvalues are complex or the eigenvectors 
are not orthogonal. If A is not square then Ax = Ax is impossible and eigenvectors 
fail (left side in Rm, right side in Rn). We need an idea that succeeds for every matrix. 

The Singular Value Decomposition fills this gap in a perfect way. In our applications, 
A is often a matrix of data. The rows could tell us the age and height of 1000 children. 
Then A is 2 by 1000: definitely rectangular. Unless height is exactly proportional to age, 
the rank is r = 2 and that matrix A has two positive singular values cr1 and cr2 . 

The key point is that we need two sets of singular vectors, the u's and the v's. 
For a real m by n matrix, the n right singular vectors v 1 , ... , Vn are orthogonal in Rn. 
The m left singular vectors u 1 , ... , Um are perpendicular to each other in Rm. 
The connection between n v's and m u's is not Ax = AX. That is for eigenvectors. 
For singular vectors, each A v equals 17U : 

jAvl = 171Ul .. Avr = 17rUr I IAvr+l = 0 .. Avn = oj (1) 

I have separated the first r v's and u's from the rest. That number r is the rank of A, the 
number of independent columns (and rows). Then r is the dimension of the column space 
and the row space. We will have r positive singular values in descending order 
171 172 ••• 17r > 0. The last n- r v's are in the nullspace of A, and the 
last m- r u's are in the nullspace of AT. 

Our first step is to write equation (1) in matrix form. All of the right singular vectors 
v 1 to Vn go in the columns of V. The left singular vectors u 1 to Um go in the columns 
of U. Those are square orthogonal matrices (VT = v-l and UT = u-1) because 
their columns are orthogonal unit vectors. Then equation (1) becomes the full SVD, 
with square matrices V and U : 

(2) 
You see Avk = CTkUk in the first r columns above. That is the important part ofthe SVD. 
It shows the basis of v's for the row space of A and then u's for the column space. 
After the positive numbers cr1 , ... , CTr on the main diagonal of L:, the rest of that matrix 
is all zero from the nullspaces of A and AT. 

The eigenvectors give AX = X A. But AV = UL: needs two sets of singular vectors. 

Moindre carrés linéaires
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18 Highlights of Linear Algebra 

The equations AT y = 0 give "currents" Y1, Yz, Y3, Y4, Y5 on the five edges of the graph. 
Flows around loops obey Kirchhoff's Current Law : in = out. Those words apply 
to an electrical network. But the ideas behind the words apply all over engineering and 
science and economics and business. Balancing forces and flows and the budget. 

Graphs are the most important model in discrete applied mathematics. You see graphs 
everywhere: roads, pipelines, blood flow, the brain, the Web, the economy of a country 
or the world. We can understand their incidence matrices A and AT. In Section 111.6, 
the matrix AT A will be the "graph Laplacian". And Ohm's Law will lead to AT CA. 

Four subspaces for a connected graph with rn edges and n nodes : incidence matrix A 
N(A) 
C(AT) 
C(A) 
N(AT) 

The constant vectors (c, c, ... , c) make up the !-dimensional nullspace of A. 
The r edges of a tree give r independent rows of A : rank = r = n - 1. 
Voltage Law: The components of Ax add to zero around all loops. 
Current Law: ATy = (flow in)- (flow out)= 0 is solved by loop currents. 
There are rn - r = rn - n + 1 independent small loops in the graph. 

The big picture 

dimension n - r 
N(AT) 

dimension rn - r 

Figure 1.3: The Four Fundamental Subspaces: Their dimensions add ton and m. 
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Algèbre linéaire numérique
Exemple : produit matrice-matrice A: m⇥ n, B: n⇥ p.

<latexit sha1_base64="goCL9NhwjP9W2VUQt6lgrnXYUGg="></latexit>

Produit matriciel C = AB :
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C = 0
<latexit sha1_base64="h7wkXliukehhwyKujqHtB7e0qd4="></latexit>

Boucle i = 1..m, j = 1..p, k = 1..n :
<latexit sha1_base64="mGav8Uvfo8np+JkDsyClsKeifXE="></latexit>

cij = cij + aikbkj
<latexit sha1_base64="9dPD2+UuAV6O5KjPNjVYhrQGabc="></latexit>

Ordre des trois boucles ?

i en premier

Column and row interpretations

can write product C = AB as

C =
[

c1 · · · cp

]

= AB =
[

Ab1 · · ·Abp

]

i.e., ith column of C is A acting on ith column of B

similarly we can write

C =

⎡

⎣

c̃T
1
...

c̃T
m

⎤

⎦ = AB =

⎡

⎣

ãT
1 B
...

ãT
mB

⎤

⎦

i.e., ith row of C is ith row of A acting (on left) on B

Linear functions and examples 2–37
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k en premier C = AB =
nX

k=1

ak b̃
T
i
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Algèbre linéaire numérique
Stabilité numérique

Supposons qu’un processus nous donne la solution estimée x̂ d’un système
linéaire Ax = b en e↵ectuant toutes les opérations matricielles de manière exacte
mais qu’il y a des erreurs d’arrondi dans le stockage en nombre flottants de A
et de b dans la mémoire (en pratique les opérations matricielles e↵ectuées pour
trouver x introduisent davantage d’erreurs d’arrondis, ce modèle donne donc
une borne supérieure sur la qualité possible d’un algorithme numérique pour
résoudre des systémes linéaires).

<latexit sha1_base64="xqHCw7utk4qtNZ1PDNz9MCkFJwo="></latexit>

Alors,
kx� x̂k1
kxk1

 4u1(A)
<latexit sha1_base64="sWRlerA7JwKREtZKj3AuEveUTvM="></latexit>

u est le unité d’arrondi, égale à la moitié de lécart entre 1 et le plus petit
nombre flottant strictement supérieur à 1. Pour les nombres flottants IEEE
single précision, u est d’environ 10�7. Il est d’environ 10�16 pour les nombres
flottants IEEE double précision.
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1(A) := kAk1kA�1k1 est le conditionnement de A pour la norme 1
<latexit sha1_base64="C223lXvWrwRtXT2qCjP6bri3F+o=">AAADM3icjVFNT9wwEJ0N35SPbTlysbqpBAdWyXKgqlSJpZceqdQFJAIrx+ul1jq25TiVVsv+rP6TSgj1VvXQHvoHODE2oaJFVesoyZs38549ntxIUbokuW5EM7Nz8wuLS8tPVlbX1ptPnx2VurKM95iW2p7ktORSKN5zwkl+YiynRS75cT564/PHH7kthVbv3djws4JeKDEUjDqk+k0VZyNqDO1PMqGGbjzd6m6TV69JdtnNLn+RGJ1PdtLpAyomvHREcsK0GghvpnjBlSMDTuJuTAyekEhKlLYFMnequN9sJe0kLPIYpDVoQb0OdfMKMhiABgYVFMBBgUMsgUKJzymkkIBB7gwmyFlEIuQ5TGEZtRVWcaygyI7we4HRac0qjL1nGdQMd5H4WlQSeIEajXUWsd+NhHwVnD37N+9J8PRnG+M/r70KZB18QPZfuvvK/9X5XhwM4WXoQWBPJjC+O1a7VOFW/MnJg64cOhjkPB5g3iJmQXl/zyRoytC7v1sa8t9DpWd9zOraCn74U+KA0z/H+RgcddrpbrvzrtPaP6hHvQib8By2cJ57sA9v4RB66P0ZbhozjdnoU/Ql+hp9uyuNGrVmA35b0c9bRTm5Ag==</latexit>

si u1(A)  .5
<latexit sha1_base64="jmyKUAP9rg+ITALki1gGwIR6TT0="></latexit>
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