Théorie de l'apprentissage : TLDR

High-dimensional statistics : non asymptotic

- Bias-variance decomposition of risk (same approach as in classical case)
- Explicit computation impossible for typical ML problems
- Upper bounding :
 - bias : Rademacher (or Gaussian) averages
 - variance : concentration inequalities

High-dimensional statistics : asymptotic

Different asymptotic regimes, e.g. n -> +∞ et n/p -> constante

Deep learning theory?

- Over-parametrisation + SGD -> computationally tractable minimum-norm interpolation?
- Good generalisation properties of minimum-norm interpolations?

Optimisation stochastique

Contexte: minimisation du risque empirique pour une fonction de coût "séparable par point de donnée"

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Descente de gradient stochastique

$$w_1 \in \mathbb{R}^d$$
 given
$$w_{k+1} \leftarrow w_k - \alpha_k \nabla f_{i_k}(w_k)$$

 i_k is chosen randomly from $\{1,\ldots,n\}$ and α_k is a positive stepsize

Optimisation stochastique

Exemple de garantie de convergence

(cf. Bottou, Curtis et Nocedal (2018) Optimisation Methods for Large-Scale Machine Learning)

Si

$$\sum_{k=1}^{\infty} \alpha_k = \infty \quad \text{and} \quad \sum_{k=1}^{\infty} \alpha_k^2 < \infty.$$

Assumption 4.1 (Lipschitz-continuous objective gradients). The objective function $F: \mathbb{R}^d \to \mathbb{R}$ is continuously differentiable and the gradient function of F, namely, $\nabla F: \mathbb{R}^d \to \mathbb{R}^d$, is Lipschitz continuous with Lipschitz constant L > 0, i.e.,

$$\|\nabla F(w) - \nabla F(\overline{w})\|_2 \le L\|w - \overline{w}\|_2 \text{ for all } \{w, \overline{w}\} \subset \mathbb{R}^d.$$

plus des conditions de régularité pas très contraignantes

Alors

$$\liminf_{k \to \infty} \mathbb{E}[\|\nabla F(w_k)\|_2^2] = 0$$

Algèbre linéaire et optimisation

Normes de vecteurs

A function $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ is called a *vector norm* if it has the following properties:

- 1. $\|\mathbf{x}\| \ge 0$ for any vector $\mathbf{x} \in \mathbb{R}^n$, and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for any vector $\mathbf{x} \in \mathbb{R}^n$ and any scalar $\alpha \in \mathbb{R}$
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_n|$$

$$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\mathbf{x}^T \mathbf{x}}$$

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2$$

Si Q est une matrice orthogonale, $||Qx||_2 = ||x||_2$

Normes de matrices

A matrix norm is a function $\|\cdot\|:\mathbb{R}^{m\times n}\to\mathbb{R}$ that has the following properties:

- $||A|| \ge 0$ for any $A \in \mathbb{R}^{m \times n}$, and ||A|| = 0 if and only if A = 0
- $\|\alpha A\| = |\alpha| \|A\|$ for any $m \times n$ matrix A and scalar α
- $||A + B|| \le ||A|| + ||B||$ for any $m \times n$ matrices A and B

$$||A|| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{||\mathbf{x}||=1} ||A\mathbf{x}||$$

$$||A||_{F} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^{2}\right)^{1/2} \cdot ||A||_{F} = \sqrt{\sigma_{1}^{2} + \dots + \sigma_{r}^{2}}$$

Application de la notion de norme: lien valeurs propres, valeurs singulières

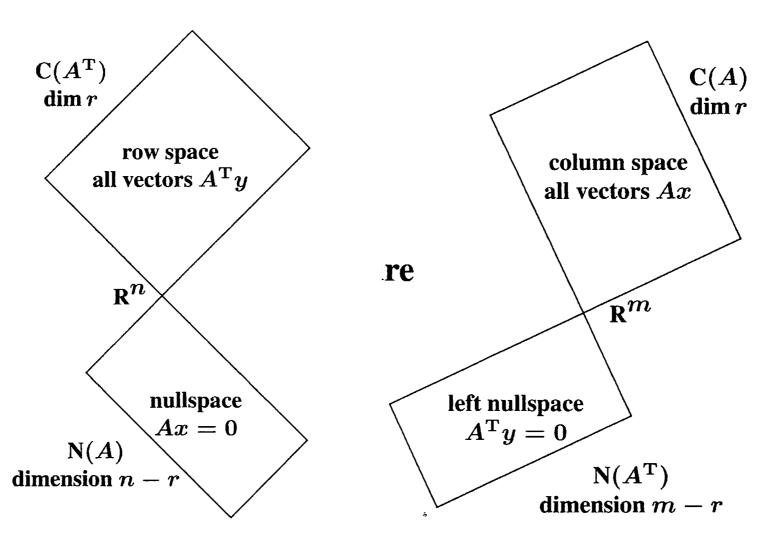
$$\sigma_r \leq |\lambda| \leq \sigma_1$$

Application de la notion de norme: lien valeurs propres, valeurs singulières

$$\sigma_r \leq |\lambda| \leq \sigma_1$$

Éléments propres de A^TA et AA^T ?

Moindre carrés linéaires



Exemple: produit matrice-matrice $A: m \times n, B: n \times p.$

Produit matriciel C = AB:

$$C = 0$$

Boucle $i = 1..m, j = 1..p, k = 1..n$:
 $c_{ij} = c_{ij} + a_{ik}b_{kj}$

Ordre des trois boucles?

i en premier
$$C=\left[\begin{array}{c} \tilde{c}_1^T \\ \vdots \\ \tilde{c}_m^T \end{array}\right]=AB=\left[\begin{array}{c} \tilde{a}_1^TB \\ \vdots \\ \tilde{a}_m^TB \end{array}\right]$$

j en premier
$$C=\left[\begin{array}{c}c_1\cdots c_p\end{array}\right]=AB=\left[\begin{array}{c}Ab_1\cdots Ab_p\end{array}\right]$$

k en premier
$$\ C = AB = \sum_{k=1}^n a_k \tilde{b}_i^T$$

Stabilité numérique

Stabilité numérique

Supposons qu'un processus nous donne la solution estimée \hat{x} d'un système linéaire Ax = b en effectuant toutes les opérations matricielles de manière exacte mais qu'il y a des erreurs d'arrondi dans le stockage en nombre flottants de A et de b dans la mémoire (en pratique les opérations matricielles effectuées pour trouver x introduisent davantage d'erreurs d'arrondis, ce modèle donne donc une borne supérieure sur la qualité possible d'un algorithme numérique pour résoudre des systèmes linéaires).

Alors,

$$\operatorname{si} \mathbf{u} \kappa_{\infty}(A) \leq .5$$
 $\frac{\|x - \hat{x}\|_{\infty}}{\|x\|_{\infty}} \leq 4\mathbf{u} \kappa_{\infty}(A)$

 \mathbf{u} est le unité d'arrondi, égale à la moitié de lécart entre 1 et le plus petit nombre flottant strictement supérieur à 1. Pour les nombres flottants IEEE single précision, \mathbf{u} est d'environ 10^{-7} . Il est d'environ 10^{-16} pour les nombres flottants IEEE double précision.

$$\kappa_{\infty}(A) := \|A\|_{\infty} \|A^{-1}\|_{\infty}$$
 est le conditionnement de A pour la norme ∞