Statistique et probabilités

- 1. Motivation : estimation problems
- 2. Computing probabilities
- 3. Computing and controlling moments and tail probabilities

Moments

Variance $\operatorname{Var}[X] = E[(X - E[X])^2]$ Moment $E[X^k]$ Moment centré $E[(X - E[X])^k]$ Covariance $\operatorname{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$

Linéarité de l'espérance

$$E\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} a_i E(X_i)$$

Bilinéarité de la covariance

$$\operatorname{Cov}\left(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \operatorname{Cov}(X_i, Y_j)$$

Moments conditionnels

Espérance conditionnelle
$$f(y) = E[X|Y = y] = \int x P_{X|Y=y}(dx)$$

Variance conditionnelle

$$g(y) = \operatorname{Var}[X|Y = y] = E[(X - E[X])^2|Y = y]$$

Loi de l'espérance totale

E[X] = E[E[X|Y]]

Loi de la covariance totale

 $\operatorname{Cov}[X,Y] = \operatorname{Cov}[E[X|Z], E[Y|Z]] + E[\operatorname{Cov}[X,Y|Z]]$

Statistique et probabilités

- 1. Motivation : estimation problems
- 2. Computing probabilities
- 3. Computing and controlling moments and tail probabilities

- 1. Espaces vectoriels et fonctions linéaires
- 2. Matrices
- 3. Angles et orthogonalité
- 4. Structure des applications linéaires

- 1. Espaces vectoriels et fonctions linéaires
- 2. Matrices
- 3. Angles et orthogonalité
- 4. Structure des applications linéaires

Fonction linéaire

- Objet central de l'algèbre linéaire (du point de vue conceptuel)
- Idée générale: fonction qui préserve les combinaisons linéaires
- Définition formelle

$$f: \left| \begin{array}{ccc} E & \to & F \\ x & \mapsto & f(x) \end{array} \right| \text{ est une fonction linéaire si et seulement si}$$

E et F sont des espaces vectoriels sur un même corps K et pour toute paire de scalaires $(\alpha, \beta) \in K^2$ et toute paire de vecteurs $(u, v) \in E^2$,

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$$

Décomposition sur une base

Définition (décomposition sur une base)

Soit une base $V = (v_i)_{i \in I}$ de E et $\Lambda = (\lambda_i)_{i \in I} \in K^I$ une famille de scalaires telle que au plus un nombre fini des λ_i soient différents de 0.

On dit que Λ est une décomposition de $v \in E$ sur la base V si et seulement si $v = \sum_{i \in I} \lambda_i v_i$.

Théorème (existence et unicité de la décomposition)

Etant donné une base $V = (v_i)_{i \in I}$ de E, tout vecteur $v \in E$ peut-être décomposé sur cette base et cette décomposition est unique.

Toute base peut donc servir de système de coordonnées pour E

- 1. Espaces vectoriels et fonctions linéaires
- 2. Matrices
- 3. Angles et orthogonalité
- 4. Structure des applications linéaires

Matrice

- Objet central de l'algèbre linéaire (en pratique)
- Idée générale: simplement un tableau de nombres en deux dimensions

$$\mathbf{M} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{np} \end{pmatrix}$$

Matrice

- Objet central de l'algèbre linéaire (en pratique)
- Idée générale: simplement un tableau de nombres en deux dimensions
- Pourquoi est-ce utile ?

$$\mathbf{M} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{np} \end{pmatrix}$$

Matrice

- Objet central de l'algèbre linéaire (en pratique)
- Idée générale: simplement un tableau de nombres en deux dimensions
- Pourquoi est-ce utile ?
 - Permet de représenter les fonctions linéaires en dimensions finie de manière simple à appréhender et pratique pour les calculs

$$\mathbf{M} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{np} \end{pmatrix}$$

Matrice d'une fonction linéaire

E, F espaces vectoriels de dimension finie $V = (v_1, ..., v_p)$ base de E $W = (w_1, ..., w_n)$ base de F $f: E \to F$, fonction linéaire M = M(f, V, W) matrice de f de V vers W.

$$\mathbf{M} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{np} \end{pmatrix} \xleftarrow{} \mathbf{w}_{n}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$f(v_{1}) f(v_{2}) \quad f(v_{j}) \qquad f(v_{p})$$

Matrice d'une fonction linéaire

Multiplication matrice/vecteur colonne: $(Mv)_i := \sum_{j=1}^n m_{ij}v_i$ Multiplication matrice-matrice: $(AB)_{ij} := \sum_{k=1}^n a_{ik}b_{kj}$

Matrice d'une fonction linéaire

L'évaluation en un point d'une fonction linéaire et la composition d'application linéaire se réduit (en dimension finie) à l'application "mécanique" de règles de calcul matriciel

Pas trop "mécanique" quand même:

Crimes contre les matrices <u>http://ee263.stanford.edu/notes/matrix_crimes.pdf</u>

Changement de base

Toute base peut servir de système de coordonnées pour E

Changement de base == changement de système de coordonnées

Matrice de passage de V à W: $P(V, W) = M(Id_E, V, W)$

Définition: transforme un vecteur v exprimé en terme de ses coordonnées dans V, en le même vecteur exprimé en terme de ses coordonnées dans W

Pour la trouver: les colonnes de P(V,W) sont les coordonnées des éléments de V (dans un ordre fixé) dans W

Matrice par blocs

La matrice

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 2 & 2 & 2 \\ 3 & 3 & 4 & 4 & 4 \\ 3 & 3 & 4 & 4 & 4 \\ 3 & 3 & 4 & 4 & 4 \end{bmatrix}$$

peut être partitionnée en quatre blocs

$$\mathbf{P}_{11} = egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}, \mathbf{P}_{12} = egin{bmatrix} 2 & 2 & 2 \ 2 & 2 & 2 \end{bmatrix}, \mathbf{P}_{21} = egin{bmatrix} 3 & 3 \ 3 & 3 \ 3 & 3 \end{bmatrix}, \mathbf{P}_{22} = egin{bmatrix} 4 & 4 & 4 \ 4 & 4 & 4 \ 4 & 4 & 4 \end{bmatrix}.$$

On peut alors écrire la matrice par bloc comme :

$$\mathbf{P}_{ ext{partitionnee}} = egin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} \ \mathbf{P}_{21} & \mathbf{P}_{22} \end{bmatrix}.$$

Interpretation des opérations matricielles

write $A \in \mathbf{R}^{m \times n}$ in terms of its columns:

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$
 then $y = Ax$ can be written as

$$y = x_1a_1 + x_2a_2 + \dots + x_na_n$$

write A in terms of its rows:

$$A = \begin{bmatrix} \tilde{a}_1^T \\ \tilde{a}_2^T \\ \vdots \\ \tilde{a}_n^T \end{bmatrix}$$
en as

then y = Ax can be written as

$$y = \begin{bmatrix} \tilde{a}_1^T x \\ \tilde{a}_2^T x \\ \vdots \\ \tilde{a}_{m_{64}}^T x \end{bmatrix}$$

Interpretation des opérations matricielles

$$c_{ij} = \tilde{a}_i^T b_j = \langle \tilde{a}_i, b_j \rangle$$

$$C = \left[c_1 \cdots c_p \right] = AB = \left[Ab_1 \cdots Ab_p \right]$$

$$C = \begin{bmatrix} \tilde{c}_1^T \\ \vdots \\ \tilde{c}_m^T \end{bmatrix} = AB = \begin{bmatrix} \tilde{a}_1^T B \\ \vdots \\ \tilde{a}_m^T B \end{bmatrix}$$

$$C = \sum_{i} a_i \tilde{b}_i^T$$

- 1. Espaces vectoriels et fonctions linéaires
- 2. Matrices
- 3. Angles et orthogonalité
- 4. Structure des applications linéaires et matrices

Produit scalaire usuel

$$(a \mid b) = \sum_{i=1}^{n} a_i b_i = a^T b = ||a||_2 ||b||_2 \cos(\theta)$$

Angles et orthogonalité

Intérêt ?

Soit E un espace vectoriel de dimension finie n muni d'un produit scalaire (. | .) et $V = (v_1, ..., v_n)$ une base orthonormale de E. Alors, pour tout $v \in E$,

$$v = \sum_{i=1}^{n} \left(v \mid v_i \right) v_i.$$

- 1. Espaces vectoriels et fonctions linéaires
- 2. Matrices
- 3. Angles et orthogonalité
- 4. Structure des applications linéaires et matrices

Décomposition en valeurs singulières

Etant donné une matrice rectangulaire quelconque

(à coefficients réels)

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix}$$

Quelle transformation linéaire représente-t-elle ?

Par exemple :
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

Décomposition en valeurs singulières

Flashback: interpretation des opérations matricielles

$$c_{ij} = \tilde{a}_i^T b_j = \langle \tilde{a}_i, b_j \rangle$$

$$C = \left[c_1 \cdots c_p \right] = AB = \left[Ab_1 \cdots Ab_p \right]$$

$$C = \begin{bmatrix} \tilde{c}_1^T \\ \vdots \\ \tilde{c}_m^T \end{bmatrix} = AB = \begin{bmatrix} \tilde{a}_1^T B \\ \vdots \\ \tilde{a}_m^T B \end{bmatrix}$$

$$C = \sum_{i} a_i \tilde{b}_i^T$$

Décomposition en valeurs singulières

Espaces associés à une matrice

Espaces associés à une matrice

$$AV = U\Sigma \qquad A \left[\begin{array}{cc} v_1 \ldots v_r \ldots v_n \end{array} \right] = \left[\begin{array}{cc} u_1 \ldots u_r \ldots u_m \end{array} \right] \left[\begin{array}{cc} \sigma_1 & & \\ & \ddots & 0 \\ & & \sigma_r & \\ \hline & 0 & & 0 \end{array} \right]$$

Par exemple :
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$U \approx \begin{pmatrix} -.21 & -.89 & .41 \\ -.52 & -.25 & -.82 \\ -.83 & .39 & .41 \end{pmatrix} \quad V \approx \begin{pmatrix} -.48 & -.57 & -.66 \\ .78 & .08 & -.62 \\ .41 & -.82 & .41 \end{pmatrix}$$
$$\left(\sigma_1 \quad \sigma_2 \quad \sigma_3\right) \approx \left(16.85 \quad 1.07 \quad 0\right)$$

Théorème spectral

Si S est une matrice symétrique, réelle de taille $m \times m$, alors il existe une matrice orthogonale réelle Q de taille $m \times m$ et une matrice diagonale réelle Λ de taille $m \times m$ telles que $S = Q \Lambda Q^T$.

Positivité

Une matrice symétrique réelle est dite définie positive, noté $S \succ 0$ ssi pour toute matrice colonne $u, u^T S u > 0$.

Une matrice symétrique réelle est dite semi-définie positive, $S \succeq 0$, ssi pour toute matrice colonne $u, u^T S u \ge 0$.

Relation d'ordre sur les matrices symétriques réelles: $S_1 \prec S_2 \text{ ssi } S_2 - S_1 \succ 0$ et $S_1 \preceq S_2 \text{ ssi } S_2 - S_1 \succeq 0$

Déterminant et trace

A matrice carrée $n \times n$

$$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma_i}
ight),$$

 $sgn(\sigma)$ est la parité du nombre d'élement dans une décomposition de σ en une séquence de transpositions (échange de deux éléments).

$$det(AB) = det(A) det(B)$$
$$Tr(A) = \sum_{i=1}^{n} a_{i,i} \quad Tr(AB) = Tr(BA)$$

 $\operatorname{Tr}(A_1A_2\ldots A_k) = \operatorname{Tr}(A_2A_3\ldots A_kA_1) = \cdots = \operatorname{Tr}(A_kA_1A_2\ldots A_{k-1})$

- 1. Espaces vectoriels et fonctions linéaires
- 2. Matrices
- 3. Angles et orthogonalité
- 4. Structure des applications linéaires et matrices

Optimisation stochastique

Contexte : minimisation du risque empirique pour une fonction de coût "séparable par point de donnée"

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Descente de gradient stochastique

$$w_1 \in \mathbb{R}^d$$
 given
 $w_{k+1} \leftarrow w_k - \alpha_k \nabla f_{i_k}(w_k)$

 i_k is chosen randomly from $\{1, \ldots, n\}$ and α_k is a positive stepsize

Optimisation stochastique

Exemple de garantie de convergence

(cf. Bottou, Curtis et Nocedal (2018) Optimisation Methods for Large-Scale Machine Learning)

Si $\sum_{k=1}^{\infty} \alpha_k = \infty \text{ and } \sum_{k=1}^{\infty} \alpha_k^2 < \infty.$

Assumption 4.1 (Lipschitz-continuous objective gradients). The objective function $F : \mathbb{R}^d \to \mathbb{R}$ is continuously differentiable and the gradient function of F, namely, $\nabla F : \mathbb{R}^d \to \mathbb{R}^d$, is Lipschitz continuous with Lipschitz constant L > 0, i.e.,

 $\|\nabla F(w) - \nabla F(\overline{w})\|_2 \le L \|w - \overline{w}\|_2 \text{ for all } \{w, \overline{w}\} \subset \mathbb{R}^d.$

plus des conditions de régularité pas très contraignantes

Alors

$$\liminf_{k \to \infty} \mathbb{E}[\|\nabla F(w_k)\|_2^2] = 0$$

Example Distributions

Distribution	PDF or PMF	Mean	Variance
Bernoulli(p)	$\begin{cases} p, & \text{if } x = 1\\ 1 - p, & \text{if } x = 0. \end{cases}$	р	p(1-p)
Binomial(n, p)	$\binom{n}{k}p^{k}(1-p)^{n-k}$ for $k = 0, 1,, n$	np	np(1-p)
Geometric(p)	$p(1-p)^{k-1}$ for $k = 1, 2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Poisson(λ)	$\frac{e^{-\lambda}\lambda^k}{k!}$ for $k = 0, 1,$	λ	λ
Uniform(a, b)	$\frac{1}{b-a}$ for all $x \in (a, b)$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$
Gaussian (μ,σ^2)	$\frac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$ for all $x \in (-\infty,\infty)$	μ	σ^2
Exponential(λ)	$\lambda e^{-\lambda x}$ for all $x \ge 0, \lambda \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

²Table reproduced from Maleki & Do's review handout by Koochak & Irvin

Random Vectors

Given *n* RV's $X_1, ..., X_n$, we can define a random vector X s.t.

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

Note: all the notions of joint PDF/CDF will apply to X.

Given $g : \mathbb{R}^n \to \mathbb{R}^m$, we have:

$$g(x) = \begin{bmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_m(x) \end{bmatrix}, \mathbb{E}[g(X)] = \begin{bmatrix} \mathbb{E}[g_1(X)] \\ \mathbb{E}[g_2(X)] \\ \vdots \\ \mathbb{E}[g_m(X)] \end{bmatrix}.$$

Covariance Matrices

For a random vector $X \in \mathbb{R}^n$, we define its **covariance matrix** Σ as the $n \times n$ matrix whose *ij*-th entry contains the covariance between X_i and X_j .

$$\Sigma = \begin{bmatrix} Cov[X_1, X_1] & \dots & Cov[X_1, X_n] \\ \vdots & \ddots & \vdots \\ Cov[X_n, X_1] & \dots & Cov[X_n, X_n] \end{bmatrix}$$

applying linearity of expectation and the fact that $Cov[X_i, X_j] = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])]$, we obtain

$$\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T]$$

Properties:

- Σ is symmetric and PSD
- ► If $X_i \perp X_j$ for all i, j, then $\Sigma = diag(Var[X_1], ..., Var[X_n])$

Multivariate Gaussian

The multivariate Gaussian $X \sim \mathcal{N}(\mu, \Sigma)$, $X \in \mathbb{R}^n$:

$$p(x;\mu,\Sigma) = \frac{1}{det(\Sigma)^{\frac{1}{2}}(2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)\right)$$

The univariate Gaussian $X \sim \mathcal{N}(\mu, \sigma^2)$, $X \in \mathbb{R}$ is just the special case of the multivariate Gaussian when n = 1.

$$p(x; \mu, \sigma^2) = \frac{1}{\sigma(2\pi)^{\frac{1}{2}}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Notice that if $\Sigma \in \mathbb{R}^{1 \times 1}$, then $\Sigma = Var[X_1] = \sigma^2$, and so

•
$$\Sigma^{-1} = \frac{1}{\sigma^2}$$

• $det(\Sigma)^{\frac{1}{2}} = \sigma$

Some Nice Properties of MV Gaussians

- Marginals and conditionals of a joint Gaussian are Gaussian
- A *d*-dimensional Gaussian X ∈ N(μ, Σ = diag(σ₁², ..., σ_n²)) is equivalent to a collection of *d* independent Gaussians X_i ∈ N(μ_i, σ_i²). This results in isocontours aligned with the coordinate axes.
- In general, the isocontours of a MV Gaussian are *n*-dimensional ellipsoids with principal axes in the directions of the eigenvectors of covariance matrix Σ (remember, Σ is PSD, so all *n* eigenvectors are non-negative). The axes' relative lengths depend on the eigenvalues of Σ.

Effect of changing variance

If $Var[X_1] \neq Var[X_2]$:

If X_1 and X_2 are positively correlated:

If X_1 and X_2 are negatively correlated:

Multivariate Gaussian

Définition générale

 $\mathbf{X} \ \sim \ \mathcal{N}(\mu, \mathbf{\Sigma}) \quad \iff \quad \text{there exist } \mu \in \mathbb{R}^k, \boldsymbol{A} \in \mathbb{R}^{k \times \ell} \text{ such that } \mathbf{X} = \boldsymbol{A}\mathbf{Z} + \mu \text{ for } Z_n \sim \ \mathcal{N}(0, 1), \text{i.i.d.}$

Distributions conditionnelles

$$\begin{split} \mathbf{x} &= \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \text{ with sizes } \begin{bmatrix} q \times 1 \\ (N-q) \times 1 \end{bmatrix} \quad \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix} \text{ with sizes } \begin{bmatrix} q \times 1 \\ (N-q) \times 1 \end{bmatrix} \\ \mathbf{\Sigma} &= \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \text{ with sizes } \begin{bmatrix} q \times q & q \times (N-q) \\ (N-q) \times q & (N-q) \times (N-q) \end{bmatrix} \\ p(\mathbf{x}_1 \mid \mathbf{x}_2 = \mathbf{a}) &= \mathcal{N}(\bar{\boldsymbol{\mu}}, \bar{\boldsymbol{\Sigma}}), with \\ \bar{\boldsymbol{\mu}} &= \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^+ (\mathbf{a} - \boldsymbol{\mu}_2) \\ \bar{\boldsymbol{\Sigma}} &= \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^+ \boldsymbol{\Sigma}_{21} \end{split}$$

Distributions marginales ?