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Plan du cours (prévisionnel)

9 séances de 3h


Partie 1 (DM1) : algèbre linéaire et probabilités


1. Notions de bases sur les preuves (+ Algèbre linéaire?)


2. Algèbre linéaire (+ Probabilités?)


3. Probabilités


Partie 2 (DM2): statistique et optimisation


4. Statistiques


5. Optimisation


Partie 3 (DM3): 


6. Optimisation sous contraintes


7. Optimisation stochastique


8. Théorie de l’apprentissage
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Présence de contraintes: 
Descente de gradient projeté
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Présence de contraintes: 
Descente de gradient projeté

Input: x0 2 Rn, f : U ⇢ Rn ! R de classe C1, s > 0, 0 < � < 1, 0 < � < 1.
<latexit sha1_base64="LM484ZQuihDcXQdChXJrk/IFm6s="></latexit>

‘Backtracking’ avec la règle d’Armijo le long de l’arc de projection

U convexe, fermé, non-vide
<latexit sha1_base64="Hg1YLHrn1Ov/RMU/A6dTmna5bHQ="></latexit>

Iteration: xk+1 := pk(�mks)
<latexit sha1_base64="zXrmkIpICkaReAotgP5QeFWyE5Y=">AAAC6HicjVHLSsNAFD3GV42vqks3wSooQknqQhEE0Y3LCrYWbA1JOq0xT5KJKKUf4M6duPUH3OqXiH+gf+GdMQUfiE5Icubcc87MnbFj3025rr8MKcMjo2PjhQl1cmp6ZrY4N19PoyxxWM2J/Chp2FbKfDdkNe5ynzXihFmB7bNj29sX9eMLlqRuFB7xq5i1Aqsbuh3XsThRZrGkLl+aPW/d6G/vaLHprTZtxq3TXmB6/XRtudlUVZVUelmXQ/sJjByUkI9qVHxGE21EcJAhAEMITtiHhZSeExjQERPXQo+4hJAr6wx9qOTNSMVIYRHr0bdLs5OcDWkuMlPpdmgVn96EnBpWyBORLiEsVtNkPZPJgv0tuyczxd6u6G/nWQGxHGfE/uUbKP/rE71wdLAle3Cpp1gyojsnT8nkqYida5+64pQQEydwm+oJYUc6B+esSU8qexdna8n6q1QKVsydXJvhTeySLtj4fp0/Qb1SNjbKlcNKaXcvv+oCFrGEVbrPTeziAFXUKPsaD3jEk3Ku3Ci3yt2HVBnKPQv4MpT7d2xFm2Q=</latexit>

pk(r) = [xk � rrf(xk)]U et mk plus petit entier m tel que
<latexit sha1_base64="Y3cZtzNLR4nlQIssf2FT5kJps9M="></latexit>

f(xk)� f(xk+1) � �rf(xk)
T (xk � xk+1)

<latexit sha1_base64="+RDXff343TMYQ5AhUXlVmMdfNoU=">AAADBXicjVHLTttAFD1xC6Qu0ECX3ViNKgUhIjtdlGUEG5YgkYcUh2hsJmEUv2qPESjKmj9h1x1iyw90C6h/0P5F70wciYcQjGXPmXPPOZ474yWByKRt/ykZ794vLC6VP5gfl1dWP1XW1ttZnKc+b/lxEKddj2U8EBFvSSED3k1SzkIv4B1vvKvqnVOeZiKODuV5wvshG0ViKHwmiRpUmm5vWDsbjDe21DQZbzrTDcsd8Z+Wm4lRyNyIeQGzZpqjQzVtzXVu3zTNQaVq1209rOfAKUAVxdiPK/dwcYwYPnKE4IggCQdgyOjpwYGNhLg+JsSlhISuc0xhkjcnFScFI3ZM3xGtegUb0VplZtrt018CelNyWvhGnph0KWH1N0vXc52s2JeyJzpT7e2cZq/IComVOCH2Nd9c+Vaf6kViiG3dg6CeEs2o7vwiJdenonZuPehKUkJCnMLHVE8J+9o5P2dLezLduzpbput/tVKxau0X2hz/1C7pgp2n1/kctBt153u9cdCoNneKqy7jC76iRvf5A03sYR8tyr7Eb9zizrgwfhlXxvVMapQKz2c8GsbNfzcwpnA=</latexit>
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‘Backtracking’ avec la règle d’Armijo le long de l’arc de projection

Présence de contraintes: 
Descente de gradient projeté
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Dualité

f : Rn ! R
<latexit sha1_base64="nLQEYDuJfEI+PW1PfiOzi4S+TDE="></latexit>

gj : R
n ! R

<latexit sha1_base64="xfeXps1yzHxyIbDUn4nzEXbOuu4=">AAAC6HicjVFLTsMwFBzCr4RfgSWbiAqJVZUCEohVBRuWBdEWiRaUpG4xpEnkOKCq6gHYsUNsuQBbOAniBnALno2R+AiBoyTjeTNjP9tPQp5K130esoZHRsfGcxP25NT0zGx+br6WxpkIWDWIw1gc+l7KQh6xquQyZIeJYF7XD1ndP99R9foFEymPowPZS1iz63Ui3uaBJ4k6yRc6J2db/YbfdvYHx1FD8M6p9ISILx1D2rZNKrfo6uH8BCUDCjCjEuef0EALMQJk6IIhgiQcwkNKzxFKcJEQ10SfOEGI6zrDADZ5M1IxUnjEntO3Q7Mjw0Y0V5mpdge0SkivIKeDZfLEpBOE1WqOrmc6WbG/Zfd1ptpbj/6+yeoSK3FK7F++D+V/faoXiTY2dQ+ceko0o7oLTEqmT0Xt3PnUlaSEhDiFW1QXhAPt/DhnR3tS3bs6W0/XX7RSsWoeGG2GV7VLuuDS9+v8CWqrxdJacXVvvVDeNledwyKWsEL3uYEydlFBlbKvcI8HPFpn1rV1Y92+S60h41nAl2HdvQHL/5zD</latexit>

X ⇢ Rn
<latexit sha1_base64="SSJZ8OEvYz62yQXFm8jxvarCpOU="></latexit>

�1 < f⇤ < +1
<latexit sha1_base64="dkm9qqXGTZQ+7DJvG/eOp07fuE0="></latexit>

Il existe x⇤, tel que f(x⇤) = f⇤
<latexit sha1_base64="AcBCVA+5zz6uL68vU24/3MRAR/k="></latexit>
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Dualité
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Dualité

10

Fonction duale

Problème dual



Dualité
 Dualité forte et qualification des contraintes

Example :  

Si f est convexe et les contraintes gj sont linéaires, alors il n’y a pas d’écart
dual: q⇤ = f⇤

<latexit sha1_base64="HsVB6Ko9rG8n2wXV0sz5bvsZ5Ss="></latexit>
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Optimisation stochastique

15

In a similar manner, when given a set of realizations {⇠[i]}ni=1 of ⇠ corresponding to a sample set
{(xi, yi)}ni=1, let us define the loss incurred by the parameter vector w with respect to the ith sample
as

fi(w) := f(w; ⇠[i]), (3.5)

and then write the empirical risk as the average of the sample losses:

(Empirical Risk) Rn(w) =
1

n

nX

i=1

fi(w). (3.6)

For future reference, we use ⇠[i] to denote the ith element of a fixed set of realizations of a random
variable ⇠, whereas, starting in §4, we will use ⇠k to denote the kth element of a sequence of random
variables.

3.2 Stochastic vs. Batch Optimization Methods

Let us now introduce some fundamental optimization algorithms for minimizing risk. For the
moment, since it is the typical setting in practice, we introduce two algorithm classes in the context
of minimizing the empirical risk measure Rn in (3.6). Note, however, that much of our later
discussion will focus on the performance of algorithms when considering the true measure of interest,
namely, the expected risk R in (3.4).

Optimization methods for machine learning fall into two broad categories. We refer to them as
stochastic and batch. The prototypical stochastic optimization method is the stochastic gradient
method (SG) [130], which, in the context of minimizing Rn and with w1 2 Rd given, is defined by

wk+1  wk � ↵krfik(wk). (3.7)

Here, for all k 2 N := {1, 2, . . . }, the index ik (corresponding to the seed ⇠[ik], i.e., the sample pair
(xik , yik)) is chosen randomly from {1, . . . , n} and ↵k is a positive stepsize. Each iteration of this
method is thus very cheap, involving only the computation of the gradient rfik(wk) corresponding
to one sample. The method is notable in that the iterate sequence is not determined uniquely by the
function Rn, the starting point w1, and the sequence of stepsizes {↵k}, as it would in a deterministic
optimization algorithm. Rather, {wk} is a stochastic process whose behavior is determined by the
random sequence {ik}. Still, as we shall see in our analysis in §4, while each direction �rfik(wk)
might not be one of descent from wk (in the sense of yielding a negative directional derivative for
Rn from wk), if it is a descent direction in expectation, then the sequence {wk} can be guided
toward a minimizer of Rn.

For many in the optimization research community, a batch approach is a more natural and well-
known idea. The simplest such method in this class is the steepest descent algorithm—also referred
to as the gradient, batch gradient, or full gradient method—which is defined by the iteration

wk+1  wk � ↵krRn(wk) = wk �
↵k

n

nX

i=1

rfi(wk). (3.8)

Computing the step �↵krRn(wk) in such an approach is more expensive than computing the step
�↵krfik(wk) in SG, though one may expect that a better step is computed when all samples are
considered in an iteration.
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Descente de gradient stochastique

Contexte : minimisation du risque empirique pour une fonction de 
coût “séparable par point de donnée”
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Optimisation stochastique
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Exemple de garantie de convergence
arbitrarily small by selecting a small stepsize, but doing so reduces the speed at which the norm of
the gradient approaches its limiting distribution.

We now turn to the case when the SG method is applied to a nonconvex objective with a
decreasing sequence of stepsizes satisfying the classical conditions (4.19). While not the strongest
result that one can prove in this context—and, in fact, we prove a stronger result below—the
following theorem is perhaps the easiest to interpret and remember. Hence, we state it first.

Theorem 4.9 (Nonconvex Objective, Diminishing Stepsizes). Under Assumptions 4.1 and
4.3, suppose that the SG method (Algorithm 4.1) is run with a stepsize sequence satisfying (4.19).
Then

lim inf
k!1

E[krF (wk)k22] = 0 . (4.29)

The proof of this theorem follows based on the results given in Theorem 4.10 below. A “lim inf”
result of this type should be familiar to those knowledgeable of the nonlinear optimization litera-
ture. After all, such a result is all that can be shown for certain important methods, such as the
nonlinear conjugate gradient method [114]. The intuition that one should gain from the statement
of Theorem 4.9 is that, for the SG method with diminishing stepsizes, the expected gradient norms
cannot stay bounded away from zero.

The following result characterizes more precisely the convergence property of SG.

Theorem 4.10 (Nonconvex Objective, Diminishing Stepsizes). Under Assumptions 4.1 and
4.3, suppose that the SG method (Algorithm 4.1) is run with a stepsize sequence satisfying (4.19).
Then, with AK :=

P
K

k=1 ↵k,

lim
K!1

E
"

KX

k=1

↵kkrF (wk)k22

#
< 1 (4.30a)

and therefore E
"

1

AK

KX

k=1

↵kkrF (wk)k22

#
K!1����! 0. (4.30b)

Proof. The second condition in (4.19) ensures that {↵k} ! 0, meaning that, without loss of gen-
erality, we may assume that ↵kLMG  µ for all k 2 N. Then, taking the total expectation of
(4.10b),

E[F (wk+1)] � E[F (wk)]  �(µ� 1
2↵kLMG)↵k E[krF (wk)k22] + 1

2↵
2
k
LM

 �1
2µ↵kE[krF (wk)k22] + 1

2↵
2
k
LM .

Summing both sides of this inequality for k 2 {1, . . . ,K} gives

Finf � E[F (w1)]  E[F (wK+1)] � E[F (w1)]  �1
2µ

KX

k=1

↵kE[krF (wk)k22] + 1
2LM

KX

k=1

↵
2
k
.

Dividing by µ/2 and rearranging the terms, we obtain

KX

k=1

↵kE[krF (wk)k22]  2(E[F (w1)] � Finf)

µ
+

LM

µ

KX

k=1

↵
2
k
.

The second condition in (4.19) implies that the right-hand side of this inequality converges to a
finite limit when K increases, proving (4.30a). Then, (4.30b) follows since the first condition in
(4.19) ensures that AK ! 1 as K ! 1.

33

of stepsize decrease, we may invoke Theorem 4.6, from which it follows that to achieve the first
bound in (4.17) one needs

(1 � ↵rcµ)(kr+1�kr)(4F↵r
� F↵r

)  F↵r

=) kr+1 � kr �
log(1/3)

log(1 � ↵rcµ)
⇡ log(3)

↵rcµ
= O(2r).

(4.18)

In other words, each time the stepsize is cut in half, double the number of iterations are required.
This is a sublinear rate of stepsize decrease—e.g., if {kr} = {2r�1}, then ↵k = ↵1/k for all k 2
{2r}—which, from {F↵r

} = {↵rLM

2cµ } and (4.17), means that a sublinear convergence rate of the
suboptimality gap is achieved.
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Fig. 4.1: Depiction of the strategy of halving the stepsize ↵ when the expected suboptimality gap
is smaller than twice the asymptotic limit F↵. In the figure, the segment B–B0 has one third of the
length of A–A0. This is the amount of decrease that must be made in the exponential term in (4.14)
by raising the contraction factor to the power of the number of steps during which one maintains
a given constant stepsize; see (4.18). Since the contraction factor is (1�↵cµ), the number of steps
must be proportional to ↵. Therefore, whenever the stepsize is halved, one must maintain it twice
as long. Overall, doubling the number of iterations halves the suboptimality gap each time, yielding
an e↵ective rate of O(1/k).

In fact, these conclusions can be obtained in a more rigorous manner that also allows more
flexibility in the choice of stepsize sequence. The following result harks back to the seminal work
of Robbins and Monro [130], where the stepsize requirement takes the form

1X

k=1

↵k = 1 and
1X

k=1

↵
2
k
< 1. (4.19)

Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes). Under Assumptions 4.1,
4.3, and 4.5 (with Finf = F⇤), suppose that the SG method (Algorithm 4.1) is run with a stepsize
sequence such that, for all k 2 N,

↵k =
�

� + k
for some � >

1

cµ
and � > 0 such that ↵1 

µ

LMG

. (4.20)
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4.1 Two Fundamental Lemmas

Our approach for establishing convergence guarantees for SG is built upon an assumption of smooth-
ness of the objective function. (Alternative foundations are possible; see Appendix A.) This, and
an assumption about the first and second moments of the stochastic vectors {g(wk, ⇠k)} lead to two
fundamental lemmas from which all of our results will be derived.

Our first assumption is formally stated as the following. Recall that, as already mentioned in
(4.1), F can stand for either expected or empirical risk.

Assumption 4.1 (Lipschitz-continuous objective gradients). The objective function F :
Rd ! R is continuously di↵erentiable and the gradient function of F , namely, rF : Rd ! Rd, is
Lipschitz continuous with Lipschitz constant L > 0, i.e.,

krF (w) �rF (w)k2  Lkw � wk2 for all {w,w} ⇢ Rd
.

Intuitively, Assumption 4.1 ensures that the gradient of F does not change arbitrarily quickly
with respect to the parameter vector. Such an assumption is essential for convergence analyses of
most gradient-based methods; without it, the gradient would not provide a good indicator for how
far to move to decrease F . An important consequence of Assumption 4.1 is that

F (w)  F (w) + rF (w)T (w � w) + 1
2Lkw � wk22 for all {w,w} ⇢ Rd

. (4.3)

This inequality is proved in Appendix B, but note that it also follows immediately if F is twice
continuously di↵erentiable and the Hessian function r2

F : Rd ! Rd⇥d satisfies kr2
F (w)k2  L

for all w 2 Rd.
Under Assumption 4.1 alone, we obtain the following lemma. In the result, we use E⇠k

[·] to
denote an expected value taken with respect to the distribution of the random variable ⇠k given wk.
Therefore, E⇠k

[F (wk+1)] is a meaningful quantity since wk+1 depends on ⇠k through the update in
Step 6 of Algorithm 4.1.

Lemma 4.2. Under Assumption 4.1, the iterates of SG (Algorithm 4.1) satisfy the following in-
equality for all k 2 N:

E⇠k
[F (wk+1)] � F (wk)  �↵krF (wk)

TE⇠k
[g(wk, ⇠k)] + 1

2↵
2
k
LE⇠k

[kg(wk, ⇠k)k22]. (4.4)

Proof. By Assumption 4.1, the iterates generated by SG satisfy

F (wk+1) � F (wk)  rF (wk)
T (wk+1 � wk) + 1

2Lkwk+1 � wkk22
 �↵krF (wk)

T
g(wk, ⇠k) + 1

2↵
2
k
Lkg(wk, ⇠k)k22.

Taking expectations in these inequalities with respect to the distribution of ⇠k, and noting that
wk+1—but not wk—depends on ⇠k, we obtain the desired bound.

This lemma shows that, regardless of how SG arrived at wk, the expected decrease in the
objective function yielded by the kth step is bounded above by a quantity involving: (i) the expected
directional derivative of F at wk along �g(xk, ⇠k) and (ii) the second moment of g(xk, ⇠k). For
example, if g(wk, ⇠k) is an unbiased estimate of rF (wk), then it follows from Lemma 4.2 that

E⇠k
[F (wk+1)] � F (wk)  �↵kkrF (wk)k22 + 1

2↵
2
k
LE⇠k

[kg(wk, ⇠k)k22]. (4.5)
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plus des conditions de régularité pas très contraignantes 

(cf. Bottou, Curtis et Nocedal (2018) Optimisation Methods for Large-Scale Machine Learning)
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Théorie de l’apprentissage : 
TLDR

High-dimensional statistics : non asymptotic


• Bias-variance decomposition of risk (same approach as in classical case)


• Explicit computation impossible for typical ML problems


• Upper bounding : 


• bias : Rademacher (or Gaussian) averages


• variance : concentration inequalities


High-dimensional statistics : asymptotic


• Different asymptotic regimes, e.g. n -> +∞ et n/p -> constante


Deep learning theory? 


• Over-parametrisation + SGD -> computationally tractable minimum-norm interpolation?


• Good generalisation properties of minimum-norm interpolations?



Application 2: Normes de 
matrices

Matrix Norms

It is also very useful to be able to measure the magnitude of a matrix, or the distance between
matrices. However, it is not su�cient to simply de�ne the norm of an m⇥n matrix A as the norm
of an mn-vector x whose components are the entries of A. We instead de�ne a matrix norm to be
a function k � k : Rm⇥n ! R that has the following properties:

✏ kAk � 0 for any A 2 Rm⇥n, and kAk = 0 if and only if A = 0

✏ k↵Ak = j↵jkAk for any m⇥ n matrix A and scalar ↵

✏ kA+Bk  kAk+ kBk for any m⇥ n matrices A and B

Another property that is often, but not always, included in the de�nition of a matrix norm is the
submultiplicative property: if A is m⇥ n and B is n⇥ p, we require that

kABk  kAkkBk:

This is particularly useful when A and B are square matrices.
Any vector norm induces a matrix norm. It can be shown that given a vector norm, de�ned

appropriately for m-vectors and n-vectors, the function k � k : Rm⇥n ! R de�ned by

kAk = sup
x 6=0

kAxk
kxk = max

kxk=1
kAxk

is a matrix norm. It is called the natural, or induced, matrix norm. Furthermore, if the vector
norm is a `p-norm, then the induced matrix norm satis�es the submultiplicative property.

The following matrix norms are of particular interest:

✏ The `1-norm:

kAk1 = max
kxk1=1

kAxk1 = max
1jn

mX

i=1

jaij j:

That is, the `1-norm of a matrix is its maximum column sum.

✏ The `1-norm:

kAk1 = max
kxk1=1

kAxk1 = max
1im

nX

j=1

jaij j:

That is, the `1-norm of a matrix is its maximum row sum.

✏ The `2-norm:
kAk2 = max

kxk2=1
kAxk2:

3

A matrix norm is
<latexit sha1_base64="an9TmklsyAV8iFGGxc7UAvvO82I="></latexit>

Matrix Norms

It is also very useful to be able to measure the magnitude of a matrix, or the distance between
matrices. However, it is not su�cient to simply de�ne the norm of an m⇥n matrix A as the norm
of an mn-vector x whose components are the entries of A. We instead de�ne a matrix norm to be
a function k � k : Rm⇥n ! R that has the following properties:

✏ kAk � 0 for any A 2 Rm⇥n, and kAk = 0 if and only if A = 0

✏ k↵Ak = j↵jkAk for any m⇥ n matrix A and scalar ↵

✏ kA+Bk  kAk+ kBk for any m⇥ n matrices A and B

Another property that is often, but not always, included in the de�nition of a matrix norm is the
submultiplicative property: if A is m⇥ n and B is n⇥ p, we require that

kABk  kAkkBk:

This is particularly useful when A and B are square matrices.
Any vector norm induces a matrix norm. It can be shown that given a vector norm, de�ned

appropriately for m-vectors and n-vectors, the function k � k : Rm⇥n ! R de�ned by

kAk = sup
x 6=0

kAxk
kxk = max

kxk=1
kAxk

is a matrix norm. It is called the natural, or induced, matrix norm. Furthermore, if the vector
norm is a `p-norm, then the induced matrix norm satis�es the submultiplicative property.

The following matrix norms are of particular interest:

✏ The `1-norm:

kAk1 = max
kxk1=1

kAxk1 = max
1jn

mX

i=1

jaij j:

That is, the `1-norm of a matrix is its maximum column sum.

✏ The `1-norm:

kAk1 = max
kxk1=1

kAxk1 = max
1im

nX

j=1

jaij j:

That is, the `1-norm of a matrix is its maximum row sum.

✏ The `2-norm:
kAk2 = max

kxk2=1
kAxk2:

3

To obtain a formula for this norm, we note that the function

g(x) =
kAxk22
kxk22

has a local maximium or minimum whenever x is a unit `2-norm vector (that is, kxk2 = 1)
that satis�es

ATAx = kAxk22x;

as can be shown by di↵erentiation of g(x). That is, x is an eigenvector of ATA, with corre-
sponding eigenvalue kAxk22 = g(x). We conclude that

kAk2 = max
1in

q
�i(ATA):

That is, the `2-norm of a matrix is the square root of the largest eigenvalue of ATA, which is
guaranteed to be nonnegative, as can be shown using the vector 2-norm. We see that unlike
the vector `2-norm, the matrix `2-norm is much more di�cult to compute than the matrix
`1-norm or `1-norm.

✏ The Frobenius norm:

kAkF =

0

@
mX

i=1

nX

j=1

a2ij

1

A
1=2

:

It should be noted that the Frobenius norm is not induced by any vector `p-norm, but it
is equivalent to the vector `2-norm in the sense that kAkF = kxk2 where x is obtained by
reshaping A into a vector.

Like vector norms, matrix norms are equivalent. For example, if A is an m⇥ n matrix, we have

kAk2  kAkF 
p
nkAk2;

1p
n
kAk1  kAk2 

p
mkAk1;

1p
m
kAk1  kAk2 

p
nkAk1:

Eigenvalues and Eigenvectors

We have learned what it means for a sequence of vectors to converge to a limit. However, using
the de�nition alone, it may still be di�cult to determine, conclusively, whether a given sequence of

4

kAk2 = �1
<latexit sha1_base64="opGBHN4lGnJfDT5ewFbv/cvPbYg="></latexit>

kAkF =
p
�2
1 + · · ·+ �2

r
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