

MASTER 2 INFORMATIQUE PARCOURS IAAA, UE MIA

Année 2021-22

DM 2: optimisation

Exercice 1 Trouvez le parallépipède rectangle (pavé droit) dont la surface (somme des aires des six faces) est maximale parmi tous les parallépides rectangles de diagonale $x_1^2 + x_2^2 + x_3^2 = L$, où L est un nombre réel strictement positif fixé et x_1 , x_2 , x_3 sont les longueurs des côtés du parallépipède rectangle.

Exercice 2 Preuve de convergence de la descente de gradient avec règle d'Armijo.

Dans cet exercice, on va démontrer le théorème suivant :

Théorème. (Stationarité des points limites de la descente de gradient avec règle d'Armijo.)

Soit $f: \mathbf{R}^n \to \mathbf{R}$, de classe C^1 . Soit (x_k) une suite de points générée par l'application de la méthode de descente de gradient avec règle d'Armijo à f en partant de $x_0 \in \mathbf{R}^n$. Alors, tout point limite x^* de (x_k) est un point stationnaire de f, i.e. $\nabla f(x^*) = 0$.

Rappels d'analyse:

Un point limite, aussi appelé valeur d'adhérence d'une suite (u_k), est un point l tel qu'il existe une sous-suite extraite de (u_k) qui converge vers l, c'est à dire qu'il existe une fonction φ: N → N strictement croissante telle qu'on ait :

$$\lim_{k \to +\infty} u_{\phi(k)} = l.$$

- Toute suite monotone de nombres réels converge vers un nombre fini ou diverge vers l'infini (vers $+\infty$ pour une suite croissante et vers $-\infty$ pour une suite décroissante).
- Si g est continue et $\lim_{k\to+\infty} u_k = l$, alors $\lim_{k\to+\infty} g(u_k) = g(l)$.
- Théorème des accroissements finis : si a et b sont deux réels avec a < b et $f : [a, b] \to \mathbf{R}$ est une fonction continue sur [a, b] et dérivable sur [a, b[, alors il existe un réel $c \in]a, b[$, tel que :

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

• Théorème de Bolzano-Weierstrass : de toute suite bornée de vecteurs de \mathbb{R}^n , on peut extraire une sous-suite convergente.

On va raisonner par l'absurde. Supposons que \hat{x} est un point limite de (x_k) avec $\nabla f(\hat{x}) \neq 0$.

- 1. Montrer que la suite $(f(x_k))$ converge vers $f(\hat{x})$.
- 2. En déduire que la suite $(-\alpha_k \nabla f(x_k)^T \nabla f(x_k))$ converge vers 0, où α_k est le pas utilisé dans la descente de gradient avec règle d'Armijo à l'étape k, i.e. $x_{k+1} = x_k \alpha_k \nabla f(x_k)$.
- 3. Par hypothèse, on peut extraire de (x_k) une suite $(x_{\phi(k)})$ qui converge vers \hat{x} . Montrer que $(\alpha_{\phi(k)})$ converge vers 0.
- 4. En déduire qu'il existe un entier k_0 tel que pour tout entier $k \ge k_0$, le pas initial s n'est pas satisfaisant et on le réduit au moins une fois quand on applique la règle d'Armijo à l'étape $\phi(k)$ (en le multipliant par β).
- 5. En déduire que pour tout $k \ge k_0$, on a

$$\frac{f\left(x_{\phi(k)}\right) - f\left(x_{\phi(k)}\right) - \delta_k \frac{\nabla f(x_{\phi(k)})}{\|\nabla f(x_{\phi(k)})\|}}{\delta_k} < \sigma \nabla f\left(x_{\phi(k)}\right)^T \frac{\nabla f(x_{\phi(k)})}{\|\nabla f(x_{\phi(k)})\|},$$

où $\delta_k = \frac{\alpha_{\phi(k)}}{\beta} \|\nabla f(x_{\phi(k)})\|$ et σ et β sont les paramètres utilisés pour l'application de la règle d'Armijo.

6. En déduire que pour tout $k \geq k_0$, il existe $\gamma_k \in]0, \delta_k[$, tel que

$$\nabla f \left(x_{\phi(k)} - \gamma_k \frac{\nabla f(x_{\phi(k)})}{\|\nabla f(x_{\phi(k)})\|} \right)^T \frac{\nabla f(x_{\phi(k)})}{\|\nabla f(x_{\phi(k)})\|} < \sigma \nabla f \left(x_{\phi(k)} \right)^T \frac{\nabla f(x_{\phi(k)})}{\|\nabla f(x_{\phi(k)})\|}.$$

(Indice: utiliser le théorème des accroissements finis.)

- 7. Montrer que $\lim_{k\to+\infty} \gamma_k = 0$.
- 8. Montre qu'il existe une sous-suite extraite de $\left(\frac{\nabla f(x_{\phi(k)})}{\|\nabla f(x_{\phi(k)})\|}\right)$ qui converge vers un vecteur $v \in \mathbf{R}^n$. (Indice : utiliser le théorème de Bolzano-Weierstrass.)
- 9. Montrer que:

$$\nabla f(\hat{x})^T v \le 0.$$

(Indice: utiliser les résultats des question 6, 7 et 8.)

10. Montrer qu'il existe une fonction strictement croissante $\psi: \mathbf{N} \to \mathbf{N}$, telle que :

$$\nabla f(\hat{x})^T v = \lim_{k \to +\infty} \|\nabla f\left(x_{\psi \circ \phi(k)}\right)\|_2.$$

11. Conclure.

Exercice 3 Écart dual pour le problème du sac à dos.

On considère n objets avec des poids associés w_1, w_2, \ldots, w_n , et des valeurs associées v_1, v_2, \ldots, v_n . On veut sélectionner un sous-ensemble de ces objets tel que la somme des poids associés aux éléments de ce sous-ensemble ne dépasse pas un réel A > 0 donné et tel que la somme des valeurs associées aux éléments de ce sous-ensemble soit maximisée.

1. Montrer que le problème peut être formulé comme suit :

minimiser
$$f(x)=-\sum_{i=1}^n v_i x_i$$
 (Problème du sac à dos) avec $\sum_{i=1}^n w_i x_i \leq A$ et pour tout $i\in\{1,2,\ldots,n\},\ x_i\in\{0,1\}.$

- 2. Trouver graphiquement la solution du problème dual et représenter graphiquement l'écart de dualité pour n = 5, $(w_1, w_2, w_3, w_4, w_5) = (1, 2, 3, 4, 5)$ et $(v_1, v_2, v_3, v_4, v_5) = (3, 1, 6, 2, 5)$.
- 3. Calculer explicitement la fonction duale dans le cas général.
- 4. Trouver la solution du problème dual. (Indice : on peut faire l'hypothèse, sans perte de généralité, que $\frac{v_1}{w_1} \le \frac{v_2}{w_2} \le \cdots \le \frac{v_n}{w_n}$ et étudier la valeur de la fonction duale en fonction de la position de son argument par rapport aux v_i/w_i .)
- 5. On considère maintenant le problème relaxé :

minimiser
$$f(x) = -\sum_{i=1}^{n} v_i x_i$$
 (Problème du sac à dos relaxé)
avec $\sum_{i=1}^{n} w_i x_i \le A$
et pour tout $i \in \{1, 2, \dots, n\}, x_i \in [0, 1].$

Justifier qu'il n'y a pas d'écart de dualité pour ce problème.

- Montrer que le problème dual du problème relaxé atteint le même maximum que le problème dual du problème original.
- 7. Utiliser les conditions d'optimalité primale-duale vues en cours pour obtenir la solution du problème primal relaxé.

8. Montrer que cette solution est faisable pour le problème primal original et en déduire que :

$$q^* \le f^* \le q^* + \max_{1 \le i \le n} v_i,$$

où f^* est la solution du problème primal original et q^* est la solution du problème dual original.

Exercice 4 Moindre carrés linéaires avec régularisation ℓ_2 (ridge regression) et ℓ_1 (LASSO).

On a vu en cours que, dans le cadre de l'optimisation sans contraintes, quand on ajoute des hypothèses de convexité, la condition nécessaire d'extremum local du premier ordre $\nabla f=0$ peut devenir une condition nécessaire et suffisante de minimum global. De la même manière, dans un cadre d'optimisation sous contraintes, avec des hypotheèses de convexité appropriée, les conditions de Karush-Kuhn-Tucker (KKT) peuvent devenir des condition nécessaires et suffisantes de minimum global. Plus précisément on a le théorème suivant.

Théorème. (Conditions KKT sous hypothèses de convexité et condition de Slater.)

Soit f, $(e_i)_{i=1}^{n_E}$ et $(c_i)_{i=1}^{n_I}$ des fonctions de \mathbf{R}^m vers \mathbf{R} , convexes et de classe \mathcal{C}^1 . Si la condition de Slater pour la qualification des contraintes est vérifiée—c'est à dire s'il existe $x_0 \in \mathbf{R}^m$, tel que pour tout i dans $\{1, 2, \ldots, n_I\}$ on a : soit $c_i(x_0) > 0$, soit c_i est une fonction affine—alors les deux propositions suivantes sont équivalentes.

- $\mathcal{P}_1(x^*)$: il existe $\lambda_E^* \in \mathbf{R}^{n_E}$ et $\lambda_I^* \in \mathbf{R}^{n_I}$, tels que :
 - 1. $\nabla_x \mathcal{L}(x^*, \lambda_E^*, \lambda_I^*) = 0$, où $\mathcal{L}(x, \lambda_E, \lambda_I) = f(x) \sum_{i=1}^{n_E} \lambda_{E,i} e_i(x) \sum_{i=1}^{n_I} \lambda_{I,i} c_i(x)$
 - 2. $c_i(x^*) = 0$ pour tout *i* dans $\{1, 2, ..., n_E\}$
 - 3. $c_i(x^*) \ge 0$ pour tout *i* dans $\{1, 2, ..., n_I\}$
 - 4. $\lambda_{I,i} \geq 0$ pour tout i dans $\{1, 2, \dots, n_I\}$
 - 5. $\lambda_{I,i}c_i(x^*) = 0$ pour tout *i* dans $\{1, 2, ..., n_I\}$
- $\mathcal{P}_2(x^*): x^*$ est un minimum global de f sur l'ensemble des $x \in \mathbf{R}^d$ tels que $e_i(x) = 0$ et $c_j(x) \ge 0$ pour tout i dans $\{1, 2, \dots, n_E\}$ et pour tout j dans $\{1, 2, \dots, n_I\}$.

Soit L > 0, y une matrice colonne de taille n et A une matrice de taille n par m. On considère le problème d'optimisation sous contraintes suivant :

Minimiser $||Ax - y||_2$, pour $x \in \mathbf{R}^m$ tel que $||x||_2 \le L$. (ridge regression V1)

On note X^* l'ensemble des solutions globales de ce problème d'optimisation.

1. Montrer qu'il existe $L_1 > 0$, tel que $X^* = X_1^*$, où X_1^* est l'ensemble des solutions globales du problème d'optimisation :

Minimiser
$$||Ax - y||_2^2$$
, pour $x \in \mathbf{R}^m$ tel que $||x||_2^2 \le L_1$. (ridge regression V2)

- 2. Montrer que le problème ridge regression V2 satisfait les conditions du théorème ci-dessus.
- 3. Montrer qu'il existe un nombre réel $\lambda > 0$, tel que $X_1^* = X_2^*$, où X_2^* est l'ensemble des solutions globales du problème d'optimisation (non contraint mais « pénalisé ») :

Minimiser
$$||Ax - y||_2^2 + \lambda ||x||_2^2$$
, pour $x \in \mathbf{R}^m$. (ridge regression V3)

- 4. Montrer que pour toute matrice M de taille n par m et tout réel $\delta > 0$, $M^TM + \delta I_m$ est inversible. (On pourra montrer, par exemple, que la matrice est symmétrique définie positive et utiliser le théorème spectral pour conclure.)
- 5. Montrer que le problème ridge regression V3 (et par conséquent les deux autres) possède toujours une unique solution $x^* = (A^T A + \lambda I)^{-1} A^T y$.
- 6. Montrer que x^* tend vers la solution de norme euclidienne minimale d'un problème des moindres carrés non contraint quand λ tend vers 0 par valeurs positives. (Indice : commencer par le cas où m=n=1, puis le cas où A est diagonale, puis le cas général.)

En prenant toujours L > 0, y une matrice colonne de taille n et A une matrice de taille n par m, on considère à présent le problème d'optimisation sous contraintes suivant :

Minimiser
$$||Ax - y||_2$$
, pour $x \in \mathbf{R}^m$ tel que $||x||_1 \le L$. (LASSO V1)

On note X^* l'ensemble des solutions globales de ce problème d'optimisation.

7. Montrer que $X^* = X_1^*$, où X_1^* est l'ensemble des solutions globales du problème d'optimisation :

Minimiser
$$||Ax - y||_2^2$$
, pour $x \in \mathbf{R}^m$ tel que $||x||_1 \le L$. (LASSO V2)

- 8. Montrer que le problème LASSO V2 ne satisfait pas les conditions du théorème ci-dessus.
- 9. Montrer que $x \in X_1^*$ si et seulement si il existe $x_+ \in \mathbf{R}^m$ et $x_- \in \mathbf{R}^m$, tels que $x = x_+ x_-$, pour tout i dans $\{1, 2, \dots, m\}$, $x_{+,i} \ge 0$ et $x_{-,i} \ge 0$, et $(x_+, x_-) \in X_2^*$, où X_2^* est l'ensemble

des solutions globales du problème d'optimisation :

Minimiser
$$||Ax_{+} - Ax_{-} - y||_{2}^{2}$$
, pour $x_{+} \in \mathbf{R}^{m}$, $x_{-} \in \mathbf{R}^{m}$ tels que (LASSO V3)
pour tout $i \in \{1, 2, ..., m\}, \ x_{+,i} \geq 0$,
pour tout $i \in \{1, 2, ..., m\}, \ x_{-,i} \geq 0$,

$$\sum_{i=1}^{m} x_{+,i} + \sum_{i=1}^{m} x_{-,i} \leq L.$$

- 10. Montrer que le problème LASSO V3 satisfait les conditions du théorème ci-dessus.
- 11. Soit $(x_+^*, x_-^*) \in X_2^*$. On note $x^* = x_+^* x_-^* \in X_1^*$. Montrer qu'il existe $\lambda > 0$, tel que :

pour tout
$$j \in \{1, 2, ..., m\}$$
 tel que $x_j \neq 0$, $2a_j^T(y - Ax) = \lambda \operatorname{sgn}(x_j)$,
pour tout $j \in \{1, 2, ..., m\}$ tel que $x_j = 0$, $2|a_j^T(y - Ax)| \leq \lambda$,

où a_j est la j-ième colonne de A et sgn(u) est 0 si u = 0, 1 si u > 0 et -1 sinon.

Remarquez que ce résultat montre que les solutions du problème sont parcimonieuses : si la valeur absolue de la covariance entre le j-ième régresseur a_j et le résiduel y - Ax est inférieure à $m\lambda$, un poids $x_j = 0$ est associé à ce régresseur.

- 12. Montrer que si $\lambda \geq \lambda_{\max} = \max_{1 \leq j \leq m} |a_j^T y|$, alors $0 \in X^*$.
- 13. Calculer et comparer les solutions des problèmes de ridge regression, LASSO et moindres carrés classique pour une matrice A orthogonale et commenter.
- 14. Dans le cas général, les équations de la question 11, ne permettent pas d'obtenir directement les coefficients de x^* qui sont différents de 0 et leur signe. Justifier l'utilisation d'un algorithme de descente de gradient projeté pour obtenir une solution du problème $LASSO\ V3$ et calculer les équations de mise à jour correspondantes.