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Elements of Probability
Sample Space Q
{HH,HT, TH, TT}
Event ACQ
{HH,HT}, Q
Event Space F

Probability Measure P : 7 — R
P(A)>0 VAecF

PQ) =1

countabl
If A1, Ao, ... dlas?o?nt set of events (A; N Aj = () when i # j),

then
P (UA,) => P(A)
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Conditional Probability and Bayes' Rule
For any events A, B such that P(B) # 0, we define:

P(AN B)

P(AIB) = —pg

Let's apply conditional probability to obtain Bayes’ Rule!
P(BNA) P(ANB)
P(A) — P(A)
P(B)P(A| B)
P(A)

P(B|A) =

Conditioned Bayes’ Rule: given events A, B, C,

P(B|A C)P(A]|C)

PAIB,C) = == piery

See Appendix for proof :)



Law of Total Probability

Let By, ..., B, be n disjoint events whose union is the entire sample
space. Then, for any event A,

= Z P(AN B))
i=1

=) P(A|B)P(B)
i=1

We can then write Bayes' Rule as:

Bi)P(A | Bx)
P(A)
P(Bk)P(A | Bx)

>.ie1 P(A| Bi)P(Bi)

P8 | A) ="




Example

Treasure chest A holds 100 gold coins. Treasure chest B holds 60
gold and 40 silver coins.

Choose a treasure chest uniformly at random, and pick a coin from
that chest uniformly at random. If the coin is gold, then what is
the probability that you chose chest A? 1

!Question based on slides by Koochak & Irvin
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Example

Treasure chest A holds 100 gold coins. Treasure chest B holds 60
gold and 40 silver coins.

Choose a treasure chest uniformly at random, and pick a coin from
that chest uniformly at random. If the coin is gold, then what is
the probability that you chose chest A? 1

Solution:

P(A)P(G | A)
(A)P(G | A)+ P(B)P(G | B)
_ 05x1
- 05x1+4+05x0.6

- [0.625]

P(AIG) = 5

!Question based on slides by Koochak & Irvin



Chain Rule

For any n events Ay, ..., A,, the joint probability can be expressed
as a product of conditionals:

P(AiNAxN..NA,)
= P(Al)P(A2 | Al)P(A3 | AN Al)P(An ’ Ar_1NA,oN...N Al)



Independence

Events A, B are independent if
P(AB) = P(A)P(B)
We denote this as A L B. From this, we know that if A L B,

PalB) = PG = T =P

Implication: If two events are independent, observing one event
does not change the probability that the other event occurs.
In general: events Ay, ..., A, are mutually independent if

P((A) =TT PA)
jes ics

for any subset S C {1, ..., n}.



Random Variables

real
> A random variable X maps outcomes to real values.
> X takes on values in Val(X) C R.

> X = k is the event that random variable X takes on value k.

Discrete RVs:
» Val(X) is a set
» P(X = k) can be nonzero
Continuous RVs:
> Val(X) is a range
» P(X = k) =0 forall k. P(a<X < b) can be nonzero.

Mixed RVs
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Probability Mass Function (PMF)

Given a discrete RV X, a PMF maps values of X to probabilities.
px(x) == P(X = x)

For a valid PMF, >, .y Px(x) = 1.



Cumulative Distribution Function (CDF)

A CDF maps a continuous RV to a function R — [0, 1]
Fx(x) := P(X < x)

A CDF must fulfill the following:
» limy_ oo Fx(x) =0
» limy_oo Fx(x) =1

» If a < b, then Fx(a) < Fx(b) (i.e. CDF must be
nondecreasing)

Also note: P(a < X < b) = Fx(b) — Fx(a).
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Probability Density Function (PDF)

PDF of a continuous RV is simply the derivative of the CDF.

de(X)
dx

fx(x) =
Thus,
b
P(a < X < b) = Fx(b) — Fx(a) = / fx(x)dx

A valid PDF must be such that
» for all real numbers x, fx(x) > 0.
> [ fx(x)dx =1



On a représente sur le graphe ci-dessous la densité de probabilité d’une variable aléatoire
réelle X.
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1) La densité de probabilité de X prend une valeur supérieure 1 en X = 0.4. Cela vous
parait-il normal 7 Justifiez votre réponse.

Soit z une réalisation de X.

2) Quelle est la probabilité d’avoir x = 0.17 Quelle est la probabilité d’avoir z = 0.4 7 Est
il plus probable d’observer z = 0.4 ou x = 0.17 A quel point (approximativement) ?
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Expectation

Let g be an arbitrary real-valued function.
» If X is a discrete RV with PMF px:

Eg(X)]:= > &(x)px(x)

x€Val(X)

» If X is a continuous RV with PDF fx:

o0

Elg(X)] == / £ (x)fc(x)dx

—00

Intuitively, expectation is a weighted average of the values of
g(x), weighted by the probability of x.



Properties of Expectation

For any constant a € R and arbitrary real function f:
> Ela]=a
> El[af (X)] = aE[f(X)]

Linearity of Expectation

Given n real-valued functions f1(X), ..., f,(X),

E[D (X)) =D E[fi(X)]
i=1 i=1

Law of Total Expectation
Given two RVs X, Y:
E[E[X | Y]] = E[X]

N.B. E[X | Y] =2, cvaix) XPx|v(x]y) is a function of Y.
See Appendix for details :S



Example of Law of Total Expectation

El Goog sources two batteries, A and B, for its phone. A phone
with battery A runs on average 12 hours on a single charge, but
only 8 hours on average with battery B. El Goog puts battery A in
80% of its phones and battery B in the rest. If you buy a phone
from El Goog, how many hours do you expect it to run on a single
charge?
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Example of Law of Total Expectation

El Goog sources two batteries, A and B, for its phone. A phone
with battery A runs on average 12 hours on a single charge, but
only 8 hours on average with battery B. El Goog puts battery A in
80% of its phones and battery B in the rest. If you buy a phone
from El Goog, how many hours do you expect it to run on a single
charge?
Solution: Let L be the time your phone runs on a single charge.
We know the following:

> px(A) =0.8, px(B) =0.2,

> E[L| Al =12, E[L | B] =8.
Then, by Law of Total Expectation,

E[L]=E[E[L|X]]= > E[L|X]px(X)
X€{A,B}
= E[L | Alpx(A) + E[L | B]px(B)

—12x0.8+8x0.2=[11.2]



Variance

The variance of a RV X measures how concentrated the
distribution of X is around its mean.

Var(X) := E[(X — E[X])?]
= E[X?] - E[X]?

Interpretation: Var(X) is the expected deviation of X from E[X].
Properties: For any constant a € R, real-valued function f(X)

» Var[a] =0
» Var[af (X)] = a?Var[f(X)]



Example Distributions

Distribution PDF or PMF Mean | Variance

. p, ifx=1 _
Bernoulli(p) 1—p. ifx=0. p p(l—p)
Binomial(n, p) (Z)pk(l —p)"Kfor k=0,1,....n np | np(1—p)
Geometric(p) p(1—p)<tfork=1,2,.. % %
Poisson(\) ef,:!kk for k=0,1,... A A
Uniform(a, b) | z% for all x € (a, b) atb (b;;)

— )2

Gaussian(ji, 0%) - 127T e forall x € (—o0,00) | w o?
Exponential(\) | Ae=** for all x > 0,A >0 3 =
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Joint and Marginal Distributions
» Joint PMF for discrete RV's X, Y:

pxy(x,y) =P(X =x,Y =y)

Note that >, cvaix) 2yevai(y) Pxy (X, y) =1
» Marginal PMF of X, given joint PMF of X, Y:

x) = pxv(x.y)

» Joint PDF for continuous X, Y:

52FXY(X7y)
Oxdy

Note that f f fxy(x,y)dxdy =1
> Marginal PDF of X, given joint PDF of X, Y:

x) = /OO fxy (x, y)dy

fXY(X,Y) =



Joint and Marginal Distributions for Multiple RVs
» Joint PMF for discrete RV's X, ..., X:

p(X1, ..oy Xn) = P(X1 = x1, ..., Xp = Xp)

Note that > >° .2 p(x1,..;xp) =1
» Marginal PMF of Xi, given joint PMF of Xi, ..., Xj;:

px; (x1) = Z ZP(XL vy Xn)

» Joint PDF for continuous RV's Xi, ..., X
O"F(x1,...Xn)
(5X1(5X2...5Xn

Note that f)q fX2 fxn F(X1, .y Xp)dX1...dx, = 1
» Marginal PDF of Xj, given joint PDF of Xj, ..., Xj:

fx, (x1) / / (X1 vy Xn)dX2...dXp

f(le "'7Xn) =



Expectation for multiple random variables

Given two RV's X, Y and a function g : R> = R of X, Y,
» for discrete X, Y:

Eg(X, V)= > > glsy)pxv(xy)

x€Val(x) ye Val(y)
» for continuous X, Y:

Elg(X,Y)] = /00 /OO g(x,y)fxy(x,y)dxdy

These definitions can be extended to multiple random variables in
the same way as in the previous slide. For example, for n
continuous RV's Xi, .., X;, and function g : R” — R:

IE[g(X]—// / (X1, oy Xn) xy. X, (X1 ooy Xn) X1, .y dXg



Covariance

Intuitively: measures how much one RV's value tends to move
with another RV's value. For RV's X, Y:

Cov[X, Y] :=E[(X - E[X])(Y — E[Y])]
— E[XY] - E[X]E[Y]

» If Cov[X, Y] <0, then X and Y are negatively correlated
» If Cov[X, Y] >0, then X and Y are positively correlated
» If Cov[X,Y] =0, then X and Y are uncorrelated



Properties Involving Covariance

> If X LY, then E[XY] = E[X]E[Y]. Thus,
Cov[X, Y] = E[XY] — E[X]E[Y] =0

This is unidirectional! Cov[X, Y] =0 does not imply X L Y
» Variance of two variables:

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

ie. if X LY, Var[X 4 Y] = Var[X] + Var[Y].
» Special Case:

Cov[X, X] = E[XX] — E[X]E[X] = Var[X]



Variance of a sum

n

V(Y x) = vx)+2 3 Cov(Xi, X))
i—1

1=1 I1<i1<9<n

Exercice : espérance et variance de la moyenne de n variables aléatoires i.id. ?

Law of total variance

Var(Y) = E[Var(Y | X)| + Var(E[Y | X]).

Exercice : On a une procedure aléatoire pour entrainer un classificateur binaire,

dont on obtient n échantillons (n classifieurs). Pour tester la qualité de la

procédure d’entrainement, on a une procédure aléatoire de test qui produit une erreur
de classification et qu’on applique m fois sur chacun des n classificateurs entraine .
Comment mesurer la variance de I’erreur de classification (par

exemple pour savoir si elle est significativement en dessous du hasard) a partir

des erreurs de classifications (Gi,j)1gign,1§j§m ?



Conditional distributions for RVs

Works the same way with RV's as with events:

» For discrete X, Y:

pxy (X, y)
X)) = ———
pY\X(Y| ) Px(X)
» For continuous X, Y
fxy (x,y)
f X)) = ———
Y\X(y‘ ) fX(X)

» In general, for continuous Xi, ..., Xp:

fX17X27~~-7Xn (X17 X2y eeey Xn)

fX1\X27~..,Xn(X1’X2’ oo Xn) = ... x,(x2 Xn)
25+ 5/\n Y n



Bayes' Rule for RVs

Also works the same way for RV's as with events:

» For discrete X, Y:

px|y (x|y)py(y)

pyx(y|x) = 5

y'eVal(Y) PX]| y (x[y")py (v')

» For continuous X, Y:

foix(y|x) = fxiv (x1y) fy (¥)
ke J2o iy (XY )y (v")dy!



Chain Rule for RVs

Also works the same way as with events:
f(x1, X2, ., xn) = F(x1)f(xa|x1)...F (Xn|X1, X2, <vy Xn—1)

— f(Xl) H f(X,"Xl, ...,X,;l)

i=2



Independence for RVs

» For X L Y to hold, it must be that Fxy(x,y) = Fx(x)Fy(y)
FOR ALL VALUES of x, y.

> Since fy|x(y|x) = fy(y) if X LY, chain rule for mutually
independent Xi, ..., X, is:

n

F(X0, 00 Xn) = F(x1)F(x2).F(xa) = [ [ F00)

i=1

(very important assumption for a Naive Bayes classifier!)



(S1O) Sleepy oversleeps (SuO) Sunny oversleeps

(SIL) Sleepy is late  (Swul) Sunny is late

(T'S) There is a train strike

S1O, SuO, SIL, SulL and T'S binary random variables n
P(X1, Xa, ., Xp) = | [ P(Xil Xy Xirig s X))

Mg
=1

P(SIL =1|S10 = a,TS =b) =a Vb, where {7; 1,72, ..., Tin, } is the set of the parents of node ¢ in the graph.

P(SuL = 1|TS = b,S5u0 = c) = bV c, This formula is often abridged into :

| = P(SI0O =1), u= P(SuO = 1) and t = P(T'S = 1). P(X1, X, Xo) = [ [ PG

Express the factorization of P(SIL,SulL,SIlO,SuO,TS) in the graphical model
Is the joint probability entirely specified if we know the values of [, u and t7?
Compute P(T'S = 1|SIL = 1) as a function of [, u and ¢.

Compute P(SIO = 1|SIL = 1) as a function of [, u and ¢.

Compute P(T'S = 1|SIL = 1,SuL = 1) as a function of [, u and ¢.

Compute P(SIO = 1|SIL =1, SuL = 1) as a function of [, u and t¢.

Suppose now that [ = 0.5, £ = 0.1 and that we observe that Sleepy is late. What is the
most probable : that there is a train strike or that Sleepy overslept ?

No O N =

8. Same question when we suppose in addition that © = 0.01 and that we observe that Sunny
18 late too.

9. What happens if we take [ = 0.5, t = 0.1 and v = 0.27



Appendix: More on Total Expectation

Why is E[X|Y] a function of Y? Consider the following:
» E[X|Y = y] is a scalar that only depends on y.

» Thus, E[X|Y] is a random variable that only depends on Y.
Specifically, E[X]|Y] is a function of Y mapping Val/(Y) to
the real numbers.

An example: Consider RV X such that

X=VY%+¢

such that e ~ AV/(0,1) is a standard Gaussian. Then,
> E[X|Y] = Y?
> EX|Y =y] = 2



Appendix: More on Total Expectation

A derivation of Law of Total Expectation for discrete X, Y:3

H'E[E[XIYI]ZIE[ZxP =x|Y)] (1)
—ZZxP =x|Y)P(Y =y) (2)
:ZZXP =x,Y =y) (3)
—Z ZP =x,Y=y) (4)
—ZXP (5)

where (1), (2), and (5) result from the definition of expectation,
(3) results from the definition of cond. prob., and (5) results from
marginalizing out Y.

3from slides by Koochak & Irvin



Appendix: A proof of Conditioned Bayes Rule

Repeatedly applying the definition of conditional probability, we
have: 4

P(bla,c)P(alc) _ P(b,a,c) P(alc)
P(b|c) P(a,c)  P(b|c)
P(b,a,c)  P(ac)
P(a,c)  P(blc)P(c)

P(b, a, c)
P(b|c)P(c)

_ P(b,a,c)
~ P(b,0)
= P(a|b, )

*from slides by Koochak & Irvin



