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Elements of Probability

Sample Space ⌦

{HH,HT ,TH,TT}

Event A ✓ ⌦

{HH,HT}, ⌦

Event Space F

Probability Measure P : F ! R
P(A) � 0 8A 2 F

P(⌦) = 1

If A1,A2, ... disjoint set of events (Ai \ Aj = ; when i 6= j),
then

P

 
[

i

Ai

!
=
X

i

P(Ai )
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Conditional Probability and Bayes’ Rule

For any events A,B such that P(B) 6= 0, we define:

P(A | B) := P(A \ B)

P(B)

Let’s apply conditional probability to obtain Bayes’ Rule!

P(B | A) = P(B \ A)

P(A)
=

P(A \ B)

P(A)

=
P(B)P(A | B)

P(A)

Conditioned Bayes’ Rule: given events A,B ,C ,

P(A | B ,C ) =
P(B | A,C )P(A | C )

P(B | C )

See Appendix for proof :)



Law of Total Probability

Let B1, ...,Bn be n disjoint events whose union is the entire sample
space. Then, for any event A,

P(A) =
nX

i=1

P(A \ Bi )

=
nX

i=1

P(A | Bi )P(Bi )

We can then write Bayes’ Rule as:

P(Bk | A) = P(Bk)P(A | Bk)

P(A)

=
P(Bk)P(A | Bk)Pn
i=1 P(A | Bi )P(Bi )



Example

Treasure chest A holds 100 gold coins. Treasure chest B holds 60
gold and 40 silver coins.
Choose a treasure chest uniformly at random, and pick a coin from
that chest uniformly at random. If the coin is gold, then what is
the probability that you chose chest A? 1

Solution:

P(A | G ) =
P(A)P(G | A)

P(A)P(G | A) + P(B)P(G | B)

=
0.5⇥ 1

0.5⇥ 1 + 0.5⇥ 0.6

= 0.625

1Question based on slides by Koochak & Irvin
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Chain Rule

For any n events A1, ...,An, the joint probability can be expressed
as a product of conditionals:

P(A1 \ A2 \ ... \ An)

= P(A1)P(A2 | A1)P(A3 | A2 \ A1)...P(An | An�1 \ An�2 \ ... \ A1)



Independence

Events A,B are independent if

P(AB) = P(A)P(B)

We denote this as A ? B . From this, we know that if A ? B ,

P(A | B) = P(A \ B)

P(B)
=

P(A)P(B)

P(B)
= P(A)

Implication: If two events are independent, observing one event
does not change the probability that the other event occurs.
In general: events A1, ...,An are mutually independent if

P(
\

i2S
Ai ) =

Y

i2S
P(Ai )

for any subset S ✓ {1, ..., n}.



Random Variables

I A random variable X maps outcomes to real values.

I X takes on values in Val(X ) ✓ R.
I X = k is the event that random variable X takes on value k .

Discrete RVs:

I Val(X ) is a set

I P(X = k) can be nonzero

Continuous RVs:

I Val(X ) is a range

I P(X = k) = 0 for all k . P(a  X  b) can be nonzero.
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Probability Mass Function (PMF)

Given a discrete RV X , a PMF maps values of X to probabilities.

pX (x) := P(X = x)

For a valid PMF,
P

x2Val(x) pX (x) = 1.



Cumulative Distribution Function (CDF)

A CDF maps a continuous RV to a probability (i.e. R ! [0, 1])

FX (x) := P(X  x)

A CDF must fulfill the following:

I limx!�1 FX (x) = 0

I limx!1 FX (x) = 1

I If a  b, then FX (a)  FX (b) (i.e. CDF must be
nondecreasing)

Also note: P(a  X  b) = FX (b)� FX (a).
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Probability Density Function (PDF)

PDF of a continuous RV is simply the derivative of the CDF.

fX (x) :=
dFX (x)

dx

Thus,

P(a  X  b) = FX (b)� FX (a) =

Z b

a
fX (x)dx

A valid PDF must be such that

I for all real numbers x , fX (x) � 0.

I R1
�1 fX (x)dx = 1



4.3

Soient a et b deux réels tels que a < b et soit X une variable aléatoire réelle de loi uniforme

sur l’intervalle [a, b]. Soit c un réel de l’intervalle [a, b].

1) Quelle est la probabilité que X soit supérieur à c ? Et celle que X soit strictement

supérieur à c ?

Les deux probabilités sont identiques et valent
b�c
b�a .

4.4

On a représente sur le graphe ci-dessous la densité de probabilité d’une variable aléatoire

réelle X.

1) La densité de probabilité de X prend une valeur supérieure 1 en X = 0.4. Cela vous

parait-il normal ? Justifiez votre réponse.

L’aire sous la courbe doit être égale à 1 mais la densité en un point particulier peut être

supérieure et même arbitrairement grande.

Soit x une réalisation de X.

2) Quelle est la probabilité d’avoir x = 0.1 ? Quelle est la probabilité d’avoir x = 0.4 ? Est

il plus probable d’observer x = 0.4 ou x = 0.1 ? A quel point (approximativement) ?

La probabilité que x soit 0.1 ou 0.4 est 0. Par contre, il est environ 5 fois plus probable

d’observer X = 0.4 que x = 0.1.

9
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Expectation

Let g be an arbitrary real-valued function.

I If X is a discrete RV with PMF pX :

E[g(X )] :=
X

x2Val(X )

g(x)pX (x)

I If X is a continuous RV with PDF fX :

E[g(X )] :=

Z 1

�1
g(x)fX (x)dx

Intuitively, expectation is a weighted average of the values of
g(x), weighted by the probability of x .



Properties of Expectation

For any constant a 2 R and arbitrary real function f :

I E[a] = a

I E[af (X )] = aE[f (X )]

Linearity of Expectation

Given n real-valued functions f1(X ), ..., fn(X ),

E[
nX

i=1

fi (X )] =
nX

i=1

E[fi (X )]

Law of Total Expectation

Given two RVs X ,Y :

E[E[X | Y ]] = E[X ]

N.B. E[X | Y ] =
P

x2Val(x) xpX |Y (x |y) is a function of Y .
See Appendix for details :)



Example of Law of Total Expectation

El Goog sources two batteries, A and B , for its phone. A phone
with battery A runs on average 12 hours on a single charge, but
only 8 hours on average with battery B . El Goog puts battery A in
80% of its phones and battery B in the rest. If you buy a phone
from El Goog, how many hours do you expect it to run on a single
charge?
Solution: Let L be the time your phone runs on a single charge.
We know the following:
I pX (A) = 0.8, pX (B) = 0.2,
I E[L | A] = 12, E[L | B] = 8.

Then, by Law of Total Expectation,

E[L] = E[E[L | X ]] =
X

X2{A,B}

E[L | X ]pX (X )

= E[L | A]pX (A) + E[L | B]pX (B)
= 12⇥ 0.8 + 8⇥ 0.2 = 11.2
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Variance

The variance of a RV X measures how concentrated the
distribution of X is around its mean.

Var(X ) := E[(X � E[X ])2]

= E[X 2]� E[X ]2

Interpretation: Var(X ) is the expected deviation of X from E[X ].
Properties: For any constant a 2 R, real-valued function f (X )

I Var [a] = 0

I Var [af (X )] = a2Var [f (X )]



Example Distributions

Distribution PDF or PMF Mean Variance

Bernoulli(p)

⇢
p, if x = 1
1� p, if x = 0.

p p(1� p)

Binomial(n, p)
�n
k

�
pk(1� p)n�k for k = 0, 1, ..., n np np(1� p)

Geometric(p) p(1� p)k�1 for k = 1, 2, ... 1
p

1�p
p2

Poisson(�) e���k

k! for k = 0, 1, ... � �

Uniform(a, b) 1
b�a for all x 2 (a, b) a+b

2
(b�a)2

12

Gaussian(µ,�2) 1
�
p
2⇡
e�

(x�µ)2

2�2 for all x 2 (�1,1) µ �2

Exponential(�) �e��x for all x � 0,� � 0 1
�

1
�2

Read review handout or Sheldon Ross for details 2

2Table reproduced from Maleki & Do’s review handout by Koochak & Irvin
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Joint and Marginal Distributions
I Joint PMF for discrete RV’s X ,Y :

pXY (x , y) = P(X = x ,Y = y)

Note that
P

x2Val(X )

P
y2Val(Y ) pXY (x , y) = 1

I Marginal PMF of X , given joint PMF of X ,Y :

pX (x) =
X

y

pXY (x , y)

I Joint PDF for continuous X ,Y :

fXY (x , y) =
�2FXY (x , y)

�x�y

Note that
R1
�1

R1
�1 fXY (x , y)dxdy = 1

I Marginal PDF of X , given joint PDF of X ,Y :

fX (x) =

Z 1

�1
fXY (x , y)dy



Joint and Marginal Distributions for Multiple RVs
I Joint PMF for discrete RV’s X1, ...,Xn:

p(x1, ..., xn) = P(X1 = x1, ...,Xn = xn)

Note that
P

x1

P
x2
...
P

xn p(x1, ..., xn) = 1
I Marginal PMF of X1, given joint PMF of X1, ...,Xn:

pX1(x1) =
X

x2

...
X

xn

p(x1, ..., xn)

I Joint PDF for continuous RV’s X1, ...,Xn:

f (x1, ..., xn) =
�nF (x1, ...xn)

�x1�x2...�xn

Note that
R
x1

R
x2
...
R
xn
f (x1, ..., xn)dx1...dxn = 1

I Marginal PDF of X1, given joint PDF of X1, ...,Xn:

fX1(x1) =

Z

x2

...

Z

xn

f (x1, ..., xn)dx2...dxn



Expectation for multiple random variables
Given two RV’s X ,Y and a function g : R2 ! R of X ,Y ,

I for discrete X ,Y :

E[g(X ,Y )] :=
X

x2Val(x)

X

y2Val(y)

g(x , y)pXY (x , y)

I for continuous X ,Y :

E[g(X ,Y )] :=

Z 1

�1

Z 1

�1
g(x , y)fXY (x , y)dxdy

These definitions can be extended to multiple random variables in
the same way as in the previous slide. For example, for n
continuous RV’s X1, ..,Xn and function g : Rn ! R:

E[g(X )] =

Z Z
...

Z
g(x1, ..., xn)fX1,...,Xn(x1, ..., xn)dx1, ..., dxn



Covariance

Intuitively: measures how much one RV’s value tends to move
with another RV’s value. For RV’s X ,Y :

Cov [X ,Y ] := E [(X � E[X ])(Y � E[Y ])]

= E[XY ]� E[X ]E[Y ]

I If Cov [X ,Y ] < 0, then X and Y are negatively correlated

I If Cov [X ,Y ] > 0, then X and Y are positively correlated

I If Cov [X ,Y ] = 0, then X and Y are uncorrelated



Properties Involving Covariance

I If X ? Y , then E[XY ] = E[X ]E[Y ]. Thus,

Cov [X ,Y ] = E[XY ]� E[X ]E[Y ] = 0

This is unidirectional! Cov [X ,Y ] = 0 does not imply X ? Y

I Variance of two variables:

Var [X + Y ] = Var [X ] + Var [Y ] + 2Cov [X ,Y ]

i.e. if X ? Y , Var [X + Y ] = Var [X ] + Var [Y ].

I Special Case:

Cov [X ,X ] = E[XX ]� E[X ]E[X ] = Var [X ]



Variance of a sum

Law of total variance

Exercice : espérance et variance de la moyenne de n variables aléatoires i.id. ?

Exercice : On a une procédure aléatoire pour entrainer un classificateur binaire,

dont on obtient n échantillons (n classifieurs).  Pour tester la qualité de la

procédure d’entrainement, on a une procédure aléatoire de test qui produit une erreur

de classification et qu’on applique m fois sur chacun des n classificateurs entrainé .

Comment mesurer la variance de l’erreur de classification (par

exemple pour savoir si elle est significativement en dessous du hasard) à partir

des erreurs de classifications                                  ?(ei,j)1in,1jm

<latexit sha1_base64="E0TpXIX8EI78cn4BcnglpDMUxBU="></latexit>



Conditional distributions for RVs

Works the same way with RV ’s as with events:

I For discrete X ,Y :

pY |X (y |x) =
pXY (x , y)

pX (x)

I For continuous X ,Y :

fY |X (y |x) =
fXY (x , y)

fX (x)

I In general, for continuous X1, ...,Xn:

fX1|X2,...,Xn
(x1|x2, ..., xn) =

fX1,X2,...,Xn(x1, x2, ..., xn)

fX2,...,Xn(x2, ..., xn)



Bayes’ Rule for RVs

Also works the same way for RV ’s as with events:

I For discrete X ,Y :

pY |X (y |x) =
pX |Y (x |y)pY (y)P

y 02Val(Y ) pX |Y (x |y 0)pY (y 0)

I For continuous X ,Y :

fY |X (y |x) =
fX |Y (x |y)fY (y)R1

�1 fX |Y (x |y 0)fY (y 0)dy 0



Chain Rule for RVs

Also works the same way as with events:

f (x1, x2, ..., xn) = f (x1)f (x2|x1)...f (xn|x1, x2, ..., xn�1)

= f (x1)
nY

i=2

f (xi |x1, ..., xi�1)



Independence for RVs

I For X ? Y to hold, it must be that FXY (x , y) = FX (x)FY (y)
FOR ALL VALUES of x , y .

I Since fY |X (y |x) = fY (y) if X ? Y , chain rule for mutually
independent X1, ...,Xn is:

f (x1, ..., xn) = f (x1)f (x2)...f (xn) =
nY

i=1

f (xi )

(very important assumption for a Naive Bayes classifier!)



Introduction to machine learning for the neurosciences - TD 1

14 mars 2013

1 Explaining away

1.1 Introduction and notations

(SlO) Sleepy oversleeps

(SlL) Sleepy is late

(TS) There is a train strike

(SuL) Sunny is late

(SuO) Sunny oversleeps

We consider the graphical model represented above, where SlO, SuO, SlL, SuL and TS are
binary random variables taking values in {0, 1}. From the observation of one or two of the blue
states, we will try to infer information about the red states. We will suppose that if either Sleepy
oversleeps or there is a train strike, then Sleepy is late (with probability one). In the same way,
if either Sunny oversleeps or there is a train strike, then we will suppose that Sunny is late (with
probability one).

More formally,
P (SlL = 1|SlO = a, TS = b) = a _ b,

and :
P (SuL = 1|TS = b, SuO = c) = b _ c,

where _ represents the logical or.

We note l = P (SlO = 1), u = P (SuO = 1) and t = P (TS = 1).

1.2 Questions

1. Express the factorization of P (SlL, SuL, SlO, SuO, TS) in the graphical model represen-
ted above.
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You will need the following identity, that can be taken as a definition of the fact that
the joint probability P (X1, X2, ..., Xn) of n random variables factorizes in a (directed)
graphical model G = ({1, 2, ..., n}, E), where the random variable Xi is associated to the
vertex i of G :

P (X1, X2, ..., Xn) =
nY

i=1

P (Xi|X⇡i,1 , X⇡i,2 , ..., X⇡i,ni
),

where {⇡i,1,⇡i,2, ...,⇡i,ni} is the set of the parents of node i in the graph.

This formula is often abridged into :

P (X1, X2, ..., Xn) =
nY

i=1

P (Xi|X⇡i).

P (SlL, SuL, SlO, SuO, TS) = P (SlL|SlO, TS)P (SuL|SuO, TS)P (SlO)P (TS)P (SuO).

2. Is the joint probability entirely specified if we know the values of l, u and t ?
3. Compute P (TS = 1|SlL = 1) as a function of l, u and t.
4. Compute P (SlO = 1|SlL = 1) as a function of l, u and t.
5. Compute P (TS = 1|SlL = 1, SuL = 1) as a function of l, u and t.

Detailed correction :
We have :

P (TS = 1|SlL = 1, SuL = 1) =
P (TS = 1, SlL = 1, SuL = 1)

P (SlL = 1, SuL = 1)
.

And we know that :

P (TS = 1, SlL = 1, SuL = 1) =
X

a2{0,1},b2{0,1}

P (TS = 1, SlL = 1, Sul = 1, SlO = a, SuO = b)

=
P

a2{0,1},b2{0,1} P (SlL = 1|SlO = a, TS = 1)P (SuL = 1|SuO = b, TS = 1)⇥
P (SlO = a)P (TS = 1)P (SuO = b)

=
P

a2{0,1},b2{0,1} 1⇥ 1⇥ P (SlO = a)tP (SuO = b)

= t

⇣P
a2{0,1} P (SlO = a)

⌘⇣P
b2{0,1} P (SuO = b)

⌘

= t,

and that :
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You will need the following identity, that can be taken as a definition of the fact that
the joint probability P (X1, X2, ..., Xn) of n random variables factorizes in a (directed)
graphical model G = ({1, 2, ..., n}, E), where the random variable Xi is associated to the
vertex i of G :

P (X1, X2, ..., Xn) =
nY

i=1

P (Xi|X⇡i,1 , X⇡i,2 , ..., X⇡i,ni
),

where {⇡i,1,⇡i,2, ...,⇡i,ni} is the set of the parents of node i in the graph.

This formula is often abridged into :

P (X1, X2, ..., Xn) =
nY

i=1

P (Xi|X⇡i).

P (SlL, SuL, SlO, SuO, TS) = P (SlL|SlO, TS)P (SuL|SuO, TS)P (SlO)P (TS)P (SuO).

2. Is the joint probability entirely specified if we know the values of l, u and t ?
3. Compute P (TS = 1|SlL = 1) as a function of l, u and t.
4. Compute P (SlO = 1|SlL = 1) as a function of l, u and t.
5. Compute P (TS = 1|SlL = 1, SuL = 1) as a function of l, u and t.

Detailed correction :
We have :

P (TS = 1|SlL = 1, SuL = 1) =
P (TS = 1, SlL = 1, SuL = 1)

P (SlL = 1, SuL = 1)
.

And we know that :

P (TS = 1, SlL = 1, SuL = 1) =
X

a2{0,1},b2{0,1}

P (TS = 1, SlL = 1, Sul = 1, SlO = a, SuO = b)

=
P

a2{0,1},b2{0,1} P (SlL = 1|SlO = a, TS = 1)P (SuL = 1|SuO = b, TS = 1)⇥
P (SlO = a)P (TS = 1)P (SuO = b)

=
P

a2{0,1},b2{0,1} 1⇥ 1⇥ P (SlO = a)tP (SuO = b)

= t

⇣P
a2{0,1} P (SlO = a)

⌘⇣P
b2{0,1} P (SuO = b)

⌘

= t,

and that :

2

P (SlL = 1, SuL = 1) = P (TS = 1, SlL = 1, SuL = 1) + P (TS = 0, SlL = 1, SuL = 1).

= t+ P (TS = 0, SlL = 1, SuL = 1)

= t+
P

a2{0,1},b2{0,1} P (TS = 0, SlL = 1, SuL = 1, SlO = a, SuO = b)

= t+

P
b2{0,1} P (SlL = 1|SlO = 1, TS = 0)P (SuL = 1|SuO = b, TS = 0)⇥

P (SlO = 1)P (TS = 0)P (SuO = b)+

P
b2{0,1} P (SlL = 1|SlO = 0, TS = 0)P (SuL = 1|SuO = b, TS = 0)⇥

P (SlO = 0)P (TS = 0)P (SuO = b)

= t+

P
b2{0,1} 1⇥ P (SuL = 1|SuO = b, TS = 0)l(1� t)P (SuO = b)+

P
b2{0,1} 0⇥ ...

= t+ l(1� t)(u+ 0).

So finally :
P (TS = 1|SlL = 1, SuL = 1) =

t

t+ lu� ltu
.

6. Compute P (SlO = 1|SlL = 1, SuL = 1) as a function of l, u and t.
7. Suppose now that l = 0.5, t = 0.1 and that we observe that Sleepy is late. What is the

most probable : that there is a train strike or that Sleepy overslept ?
8. Same question when we suppose in addition that u = 0.01 and that we observe that Sunny

is late too.
9. What happens if we take l = 0.5, t = 0.1 and u = 0.2 ?

2 Population coding

2.1 Introduction and notations

In this exercise we study an example of how the activity of a population of n neurons can
represent the value of a continuous one-dimensional perceptual stimulus s which is statically
presented over a duration T . We look at how the total number of neurons n in the population
and some other parameters, influence the precision with which s is encoded.

Our analysis rests on three important assumptions (which are debatable but not unreaso-
nable) :

3



Appendix: More on Total Expectation

Why is E[X |Y ] a function of Y ? Consider the following:

I E[X |Y = y ] is a scalar that only depends on y .

I Thus, E[X |Y ] is a random variable that only depends on Y .
Specifically, E[X |Y ] is a function of Y mapping Val(Y ) to
the real numbers.

An example: Consider RV X such that

X = Y 2 + ✏

such that ✏ ⇠ N (0, 1) is a standard Gaussian. Then,

I E[X |Y ] = Y 2

I E[X |Y = y ] = y2



Appendix: More on Total Expectation

A derivation of Law of Total Expectation for discrete X ,Y :3

E[E[X |Y ]] = E[
X

x

xP(X = x | Y )] (1)

=
X

y

X

x

xP(X = x | Y )P(Y = y) (2)

=
X

y

X

x

xP(X = x ,Y = y) (3)

=
X

x

x
X

y

P(X = x ,Y = y) (4)

=
X

x

xP(X = x) = E[X ] (5)

where (1), (2), and (5) result from the definition of expectation,
(3) results from the definition of cond. prob., and (5) results from
marginalizing out Y .

3from slides by Koochak & Irvin



Appendix: A proof of Conditioned Bayes Rule

Repeatedly applying the definition of conditional probability, we
have: 4

P(b|a, c)P(a|c)
P(b|c) =

P(b, a, c)

P(a, c)
· P(a|c)
P(b|c)

=
P(b, a, c)

P(a, c)
· P(a, c)

P(b|c)P(c)

=
P(b, a, c)

P(b|c)P(c)

=
P(b, a, c)

P(b, c)

= P(a|b, c)

4from slides by Koochak & Irvin


