Python programming and machine learning ILCB Summer School 2023 - Class 1/4

Thomas Schatz, August 28th 2023

Course material will be available after the class at https://thomas.schatz.cogserver.net/teaching/

Tentative outline

Class 1

- What is machine learning and why should you care ?
- Case study introduction: classification of cat and dog images

Class 2

• Programming basics (in python)

Class 3

Class 4

- Testing our implementation
- General discussion

• Implementing classification of cat and dog images (with linear and nearest neighbor classification algorithms)

Class 1

- What is machine learning and why should you care ?
- Case study introduction: classification of cat and dog images

Developing models of neural/cognitive processes -> "Deep learning" systems trained to classify object labels

Training

(Images from kaggle's dogs vs cats competition)

Developing models of neural/cognitive processes -> "Deep learning" systems trained to classify object labels

Interpreting recordings of brain activity -> "Encoding models" trained to predict brain activity from hypothesised cognitive representations

Example 2

Interpreting recordings of brain activity -> "Encoding models" trained to predict brain activity from hypothesised cognitive representations A Added value of the linguistic representations over and beyond acoustic and lexical segmentation properties

[Pearson's I accuracy prediction

Generating experimental stimuli -> 3D Face synthesis system

Figure 6. Exemplary fitting result for CMU-PIE with BFM Face Model. Left the original image, middle row the fitting result rendered into the image and right the resulting 3D model.

Paysan et al. (2009)

Example 3

Why should you care about Machine Learning? Summary

(At least) three broad use cases for ML in cognitive (neuro)science

- Automatisation of time-consuming tasks (annotation, stimuli preparation...)
- Analysis of experimental data (brain imaging, behavior in the lab, online experiments...)
- Development of models of cognitive and neural processes (perception, language, decision-making, navigation, memory...)

What is Machine Learning?

What do the examples have in common?

- About generalisation, i.e. learning from experience/examples
 - That's statistics
- What distinguishes machine learning within statistics?
 - Computational aspect: finding (and applying) ML solutions to problems requires a computer

What is Machine Learning?

ML == statistics + computer science

Central ML concepts: generalisation and algorithms

Central objectives of ML: finding statistically and computationally efficient algorithms to solve generalisation problems

Training

(Images from kaggle's dogs vs cats competition)

Input

Output

Training

Central concepts in ML: generalisation and algorithms

Central concepts in ML: generalisation and algorithms

Central concepts in ML: generalisation and algorithms

algorithms to solve generalisation problems

Central objectives of ML: finding **statistically** and **computationally efficient algorithms** to solve **generalisation** problems

predicted_label ('cat' or 'dog')

Held out test set

algorithms to solve generalisation problems

Test

Results

Central objectives of ML: finding statistically and computationally efficient

Central objectives of ML: finding **statistically** and **computationally efficient algorithms** to solve **generalisation** problems

Training

algorithms to solve generalisation problems

Case study: classification of cat and dog images

Measure of computational/ algorithmic complexity

Number of images in training set

Central objectives of ML: finding statistically and <u>computationally</u> efficient

Training

algorithms to solve generalisation problems

Case study: classification of cat and dog images

Measure of computational/ algorithmic complexity

Number of images in training set

Central objectives of ML: finding statistically and <u>computationally</u> efficient

Training

Training

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	164
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

What is this?

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	164
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

Case study: classification of cat and dog images I = (x, y)У Classifier 0 Ο Χ

У

Cat

Χ

1

Which line/hyperplane?

"Empirical risk minimisation" idea: pick the line that minimises classification error on training set

Which line/hyperplane?

"Empirical risk minimisation" idea: pick the line that minimises classification error on training set

Problem reduced to an optimisation problem

Formalisation of the optimisation problem (d=2) $h^* \in \arg\min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h)$

- Formalisation of the optimisation problem (d=2) $h^* \in \arg\min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h)$
- Training data
 - $\mathcal{D} = (v_i, l_i)_{i=1}^n \in (\mathbb{R}^2 \times \{cat, dog\})^n$
- Parametrisation of a line
 - $L_{p.w} = \{ v \in \mathbb{R}^2 \mid (v p)^T w = 0 \}$
- Hypothesis space
- $\mathcal{H} = \{ (p, w) \in \mathbb{R}^2 \times (\mathbb{R}^2 \setminus \{ (0, 0) \}) \}$ Loss function 1

$$\mathbf{1}_{(v_i-p)^T w > 0} + \mathbf{1}_{l_i = \text{dog}} \mathbf{1}_{(v_i-p)^T w < 0} + \frac{1}{2} \mathbf{1}_{(v_i-p)^T w < 0}$$

Search procedure?

- analytic?
- random?
- grid search?
- gradient descent: local search by starting from some point in parameter space and following slope (gradient) of loss function

Gradient descent

Gradient

$$\nabla f: x, y \mapsto \left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right)$$

Figure: https://mathinsight.org/directional_derivative_gradient_introduction

Figure: Learning Theory from First Principles, Bach (forthcoming)

2

$$(v_i)^T w > 0 + \mathbf{1}_{l_i = \text{dog}} \mathbf{1}_{(v_i - p)^T w < 0} + \frac{1}{2} \mathbf{1}_{(v_i - p)^T w = 0}$$

$$\frac{1}{e^{-x}}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{l_i = \text{cat}} \Phi\left(-(v_i - p)^T w\right) + \mathbf{1}_{l_i = \text{dog}} \Phi\left((v_i - p)^T w\right)$$
$$= \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w\right)(w_i - p)}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w}{\sigma\left((w_i - p)^T w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i - p)^T w}{\sigma\left((w_i - p)^T w} w\right)(w_i - p)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma\left((w_i -$$

$$l_i = \operatorname{cat} \sigma \left((v_i - p)^T w \right) (v_i - p) - \mathbf{1}_{l_i = \operatorname{dog}} \sigma \left(-(v_i - p)^T w \right) (v_i)$$

$$\mathbf{1}_{l_i=\mathrm{cat}}\sigma\left((v_i-p)^T w\right)w + \mathbf{1}_{l_i=\mathrm{dog}}\sigma\left(-(v_i-p)^T w\right)w$$

Summary

- Why machine learning may be relevant to cognitive scientists
 - Automatisation of time-consuming tasks
 - Analysis of experimental data
 - Development of models of cognitive and neural processes
- What is machine learning about?
 - Designing and implementing computationally efficient statistical procedures
- Classification of cat and dog images

 - classification algorithm

• Two simple algorithms for (image) classification: nearest-neighbor and linear classification A simple empirical approach to measuring the statistical and computational efficiency of a

Tomorrow

- concepts developed in today's class
- You will need
 - A laptop
 - Access to a Google account to connect to google colab (<u>https://</u> colab.research.google.com/)

Python programming basics to prepare Wednesday's implementation of

Thank you for your attention

Course material will be available after the class at https://thomas.schatz.cogserver.net/teaching/