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Tentative outline

Class 1


• What is machine learning and why should you care ?


• Case study introduction: classification of cat and dog images 


Class 2


• Programming basics (in python)


Class 3


• Implementing classification of cat and dog images (with linear and nearest neighbor classification algorithms)


Class 4


• Testing our implementation


• General discussion



Class 1

• What is machine learning and why should you care ?


• Case study introduction: classification of cat and dog images




Classifier

predicted_label (‘cat’ or ‘dog’)

Why should you care about Machine Learning?
Examples from cognitive (neuro)science

Example 1

Developing models of neural/cognitive processes

-> “Deep learning” systems trained to classify object labels

(Images from kaggle’s dogs vs 
cats competition)

Training

Dog

Cat

Cat

Cat

Classifier
Dog

Test



Why should you care about Machine Learning?
Examples from cognitive (neuro)science

Example 1

Developing models of neural/cognitive processes

-> “Deep learning” systems trained to classify object labels

Yamins et al. PNAS (2014)

features are generated at each stage, the representations be-
come increasingly IT-like (9).
Critically, we found that the top layer of the high-performing

HMO model achieves high predictivity for individual IT neural
sites, predicting 48:5± 1:3% of the explainable IT neuronal
variance (Fig. 3 B and C). This represents a nearly 100% im-
provement over the best comparison models and is comparable
to the prediction accuracy of state-of-the-art models of lower-
level ventral areas such as V1 on complex stimuli (10). In com-
parison, although the HMAX model was better at predicting IT
responses than baseline V1 or SIFT, it was not significantly
different from the V2-like model.
To control for how much neural predictivity should be

expected from any algorithm with high categorization perfor-
mance, we assessed semantic ideal observers (34), including
a hypothetical model that has perfect access to all category
labels. The ideal observers do predict IT units above chance level
(Fig. 3C, left two bars), consistent with the observation that IT
neurons are partially categorical. However, the ideal observers
are significantly less predictive than the HMO model, showing
that high IT predictivity does not automatically follow from
category selectivity and that there is significant noncategorical
structure in IT responses attributable to intrinsic aspects of hi-
erarchical network structure (Fig. 3A, last row). These results
suggest that high categorization performance and the hierar-
chical model architecture class work in concert to produce IT-
like populations, and neither of these constraints is sufficient on
its own to do so.

Population Representation Similarity. Characterizing the IT neural
representation at the population level may be equally important
for understanding object visual representation as individual IT
neural sites. The representation dissimilarity matrix (RDM) is a

convenient tool comparing two representations on a common
stimulus set in a task-independent manner (4, 35). Each entry in
the RDM corresponds to one stimulus pair, with high/low values
indicating that the population as a whole treats the pair stimuli
as very different/similar. Taken over the whole stimulus set, the
RDM characterizes the layout of the images in the high-
dimensional neural population space. When images are ordered
by category, the RDM for the measured IT neural population
(Fig. 4A) exhibits clear block-diagonal structure—associated
with IT’s exceptionally high categorization performance—as well
as off-diagonal structure that characterizes the IT neural repre-
sentation more finely than any single performance metric (Fig.
4A and Fig. S8). We found that the neural population predicted
by the output layer of the HMOmodel had very high similarity to
the actual IT population structure, close to the split-half noise
ceiling of the IT population (Fig. 4B). This implies that much of
the residual variance unexplained at the single-site level may not
be relevant for object recognition in the IT population level code.
We also performed two stronger tests of generalization: (i)

object-level generalization, in which the regressor training set
contained images of only 32 object exemplars (four in each of
eight categories), with RDMs assessed only on the remaining 32
objects, and (ii) category-level generalization, in which the re-
gressor sample set contained images of only half the categories
but RDMs were assessed only on images of the other categories
(see Figs. S8 and S9). We found that the prediction generalizes
robustly, capturing the IT population’s layout for images of
completely novel objects and categories (Fig. 4 B and C and
Fig. S8).

Predicting Responses in V4 from Intermediate Model Layers. Cortical
area V4 is the dominant cortical input to IT, and the neural
representation in V4 is known to be significantly less categorical
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Fig. 3. IT neural predictions. (A) Actual neural re-
sponse (black trace) vs. model predictions (colored
trace) for three individual IT neural sites. The x axis
in each plot shows 1,600 test images sorted first by
category identity and then by variation amount,
with more drastic image transformations toward the
right within each category block. The y axis repre-
sents the prediction/response magnitude of the
neural site for each test image (those not used to fit
the model). Two of the units show selectivity for
specific classes of objects, namely chairs (Left) and
faces (Center), whereas the third (Right) exhibits
a wider variety of image preferences. The four top
rows show neural predictions using the visual fea-
ture set (i.e., units sampled) from each of the four
layers of the HMO model, whereas the lower rows
show the those of control models. (B) Distributions
of model explained variance percentage, over the
population of all measured IT sites (n = 168). Yellow
dotted line indicates distribution median. (C)
Comparison of IT neural explained variance per-
centage for various models. Bar height shows me-
dian explained variance, taken over all predicted IT
units. Error bars are computed over image splits.
Colored bars are those shown in A and B, whereas
gray bars are additional comparisons.

8622 | www.pnas.org/cgi/doi/10.1073/pnas.1403112111 Yamins et al.

than that of IT (12). Comparing a performance-optimized model
to these data would provide a strong test both of its ability to
predict the internal structure of the ventral stream, as well as to
go beyond the direct consequences of category selectivity. We
thus measured the HMO model’s neural predictivity for the V4
neural population (Fig. 5). We found that the HMO model’s
penultimate layer is highly predictive of V4 neural responses
(51:7± 2:3% explained V4 variance), providing a significantly
better match to V4 than either the model’s top or bottom layers.
These results are strong evidence for the hypothesis that V4
corresponds to an intermediate layer in a hierarchical model
whose top layer is an effective model of IT. Of the control
models that we tested, the V2-like model predicts the most V4
variation ð34:1± 2:4%Þ. Unlike the case of IT, semantic models
explain effectively no variance in V4, consistent with V4’s lack of
category selectivity. Together these results suggest that perfor-
mance optimization not only drives top-level output model layers
to resemble IT, but also imposes biologically consistent con-
straints on the intermediate feature representations that can
support downstream performance.

Discussion
Here, we demonstrate a principled method for achieving greatly
improved predictive models of neural responses in higher
ventral cortex. Our approach operationalizes a hypothesis for
how two biological constraints together shaped visual cortex:
(i) the functional constraint of recognition performance and
(ii) the structural constraint imposed by the hierarchical net-
work architecture.

Generative Basis for Higher Visual Cortical Areas. Our modeling
approach has common ground with existing work on neural re-
sponse prediction (27), e.g., the HLN hypothesis. However, in
a departure from that line of work, we do not tune model
parameters (the nonlinearities or the model filters) separately
for each neural unit to be predicted. In fact, with the exception
of the final linear weighting, we do not tune parameters using
neural data at all. Instead, the parameters of our model were
independently selected to optimize functional performance at
the top level, and these choices create fixed bases from which any
individual IT or V4 unit can be composed. This yields a genera-
tive model that allows the sampling of an arbitrary number of

neurally consistent units. As a result, the size of the model does
not scale with the number of neural sites to be predicted—and
because the prediction results were assessed for a random
sample of IT and V4 units, they are likely to generalize with
similar levels of predictivity to any new sites that are measured.

What Features Do Good Models Share? Although the highest-per-
forming models had certain commonalities (e.g., more hierar-
chical layers), many poor models also exhibited these features,
and no one architectural parameter dominated performance
variability (Fig. S3). To gain further insight, we performed an
exploratory analysis of the parameters of the learned HMO
model, evaluating each parameter both for how sensitively it was
tuned and how diverse it was between model mixture components.
Two classes of model parameters were especially sensitive and
diverse (SI Text and Figs. S10 and S11): (i) filter statistics, in-
cluding filter mean and spread, and (ii) the exponent trading off
between max-pooling and average-pooling (16). This observation
hints at a computationally rigorous explanation for experimentally
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Fig. 4. Population-level similarity. (A) Object-level representation dissimi-
larity matrices (RDMs) visualized via rank-normalized color plots (blue = 0th
distance percentile, red = 100th percentile). (B) IT population and the HMO-
based IT model population, for image, object, and category generalizations
(SI Text). (C) Quantification of model population representation similarity to
IT. Bar height indicates the spearman correlation value of a given model’s
RDM to the RDM for the IT neural population. The IT bar represents the
Spearman-Brown corrected consistency of the IT RDM for split-halves over
the IT units, establishing a noise-limited upper bound. Error bars are taken
over cross-validated regression splits in the case of models and over image
and unit splits in the case of neural data.
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Fig. 5. V4 neural predictions. (A) Actual vs. predicted response magnitudes
for a typical V4 site. V4 sites are highly visually driven, but unlike IT sites
show very little categorical preference, manifesting in more abrupt changes
in the image-by-image plots shown here. Red highlight indicates the best-
matching model (viz., HMO layer 3). (B) Distributions of explained variances
percentage for each model, over the population of all measured V4 sites
ðn= 128Þ. (C) Comparison of V4 neural explained variance percentage for
various models. Conventions follow those used in Fig. 3.
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reduced three times prior to termination. We trained the network for roughly 90 cycles through the
training set of 1.2 million images, which took five to six days on two NVIDIA GTX 580 3GB GPUs.

6 Results

Our results on ILSVRC-2010 are summarized in Table 1. Our network achieves top-1 and top-5
test set error rates of 37.5% and 17.0%5. The best performance achieved during the ILSVRC-
2010 competition was 47.1% and 28.2% with an approach that averages the predictions produced
from six sparse-coding models trained on different features [2], and since then the best pub-
lished results are 45.7% and 25.7% with an approach that averages the predictions of two classi-
fiers trained on Fisher Vectors (FVs) computed from two types of densely-sampled features [24].

Model Top-1 Top-5
Sparse coding [2] 47.1% 28.2%
SIFT + FVs [24] 45.7% 25.7%
CNN 37.5% 17.0%

Table 1: Comparison of results on ILSVRC-
2010 test set. In italics are best results
achieved by others.

We also entered our model in the ILSVRC-2012 com-
petition and report our results in Table 2. Since the
ILSVRC-2012 test set labels are not publicly available,
we cannot report test error rates for all the models that
we tried. In the remainder of this paragraph, we use
validation and test error rates interchangeably because
in our experience they do not differ by more than 0.1%
(see Table 2). The CNN described in this paper achieves
a top-5 error rate of 18.2%. Averaging the predictions
of five similar CNNs gives an error rate of 16.4%. Training one CNN, with an extra sixth con-
volutional layer over the last pooling layer, to classify the entire ImageNet Fall 2011 release
(15M images, 22K categories), and then “fine-tuning” it on ILSVRC-2012 gives an error rate of
16.6%. Averaging the predictions of two CNNs that were pre-trained on the entire Fall 2011 re-
lease with the aforementioned five CNNs gives an error rate of 15.3%. The second-best con-
test entry achieved an error rate of 26.2% with an approach that averages the predictions of sev-
eral classifiers trained on FVs computed from different types of densely-sampled features [7].

Model Top-1 (val) Top-5 (val) Top-5 (test)
SIFT + FVs [7] — — 26.2%
1 CNN 40.7% 18.2% —
5 CNNs 38.1% 16.4% 16.4%
1 CNN* 39.0% 16.6% —
7 CNNs* 36.7% 15.4% 15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an
asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.

Finally, we also report our error
rates on the Fall 2009 version of
ImageNet with 10,184 categories
and 8.9 million images. On this
dataset we follow the convention
in the literature of using half of
the images for training and half
for testing. Since there is no es-
tablished test set, our split neces-
sarily differs from the splits used
by previous authors, but this does
not affect the results appreciably.
Our top-1 and top-5 error rates
on this dataset are 67.4% and
40.9%, attained by the net described above but with an additional, sixth convolutional layer over the
last pooling layer. The best published results on this dataset are 78.1% and 60.9% [19].

6.1 Qualitative Evaluations

Figure 3 shows the convolutional kernels learned by the network’s two data-connected layers. The
network has learned a variety of frequency- and orientation-selective kernels, as well as various col-
ored blobs. Notice the specialization exhibited by the two GPUs, a result of the restricted connec-
tivity described in Section 3.5. The kernels on GPU 1 are largely color-agnostic, while the kernels
on on GPU 2 are largely color-specific. This kind of specialization occurs during every run and is
independent of any particular random weight initialization (modulo a renumbering of the GPUs).

5The error rates without averaging predictions over ten patches as described in Section 4.1 are 39.0% and
18.3%.
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Krizhevsky, Sutskever & Hinton, 
NeurIPS (2012)
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between different representations of the speech and the low-
frequency (1–15 Hz) EEG (Figure 1). Specifically, we did this by
using linear regression to model the relationship between each
speech representation and the data from each EEG channel
(Figure 1). This approach has been used previously to describe
the relationship between the speech envelope and EEG [12],
MEG [23], and ECoG [9] data. The resulting models are
commonly referred to as temporal response functions (TRFs).
Here, as we will be representing speech using multiple variables,
we refer to our models as multivariate temporal response func-
tions (mTRFs).

Neural Evidence for Phonetic Processing
We employed a cross-validation approach to quantify how well
each speech representation related to the neural data. Specif-
ically, we fit our mTRF models using a subset of the speech seg-
ments for each subject and used these models to predict the
data corresponding to the remaining segments. The quality of
the prediction was assessed using correlation (Pearson’s r).
The overarching rationale was to use variations in these EEGpre-
diction scores across speech representations as a dependent
measure for assessing how well the EEG reflects the processing
of lower- and higher-level speech features. We focused our anal-
ysis on the EEG data from six bilateral pairs of frontotemporal
electrodes in order to investigate auditory cortical activity bilater-
ally (see Supplemental Experimental Procedures and Figure S1).

We tested five speech representations (Figure 1; see Supple-
mental Experimental Procedures): (1) broadband amplitude en-
velope, Env; (2) spectrogram, Sgram; (3) time-aligned sequence
of phonemes, Ph; (4) time-aligned sequence of phonetic
features, Fea; and (5) a combination of time-aligned phonetic
features and spectrogram, FS. Neural entrainment to speech en-
velopes is well established and, as such, performance of the Env
model acted as a baseline with which to compare the perfor-
mance of the other models. Robust mappings between speech
spectrograms and high-gamma-frequency ECoG have been
previously shown [24]. However it is unknown whether this richer
representation can be accurately indexed using low-frequency
EEG, something we address with the Sgram model. Similarly,
the relationship between high-frequency ECoG and a categorical
phoneme representation of speech has been examined before
[8]. However, no such relationship has been investigated for
EEG (or MEG), hence the Ph model. Transforming phonemes
into a lower-dimensional phonetic-feature representation [25]
frames our results in terms of the articulatory and acoustic prop-
erties of each phoneme and has advantages for the efficiency of
this type of modeling. This motivated our Fea model.
An important issue when considering the spectrogram repre-

sentation and the phonemic/phonetic-feature representations
is that they are mutually highly redundant. This is because, on
average, each phoneme will have a particular characteristic
spectrotemporal profile. So if each phoneme were always

Figure 1. Assessing the Encoding of Speech Features in EEG
128-channel EEG data were recordedwhile subjects listened to continuous, natural speech consisting of amale speaker reading from a novel or its time-reversed

complement. Linear regression was used to fit multivariate temporal response functions (mTRFs) between the low-frequency (1–15 Hz) EEG data and five

different representations of the speech stimulus. Each mTRF model was then tested for its ability to predict EEG using leave-one-out cross-validation.

2458 Current Biology 25, 2457–2465, October 5, 2015 ª2015 Elsevier Ltd All rights reserved

Di Liberto, O’Sullivan & Lalor, 
Current Biology (2015)
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Figure 2. Added value of linguistic representations averaged across channels. A, Raw prediction accuracies obtained with a model that includes only acoustic and speech segmentation properties (i.e.,
baseline model). The horizontal dashed gray line indicates the significance level of the prediction accuracies averaged across channels (left). Right, Increase in prediction accuracy (Pearson’s r) of the com-
bined representations at each level compared with a baseline model that included acoustic and speech segmentation properties of the speech; to get more insight into the magnitude of the effect, we
visualized this increase in prediction accuracy expressed as a percentage in Figure 3. B, Increase in prediction accuracy (Pearson’s r) of each representation compared with a baseline model that includes
the other linguistic representations at the considered level. C, Increase in prediction accuracy compared with a baseline model of a combination of the significant features averaged across channels (left)
and in sensor space (right). ns: not significant, *:p,0.05, **:p, 0.01, ***:p, 0.001, ****:p, 0.0001.

Gillis et al. · Neural Markers of Speech Comprehension J. Neurosci., December 15, 2021 • 41(50):10316–10329 • 10321

Gillis et al., Journal of 
Neuroscience (2021)
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Generating experimental stimuli

-> 3D Face synthesis system

shape shape components texture texture components
mean 1st. (+5�) 2nd. (+5�) 3rd. (+5�) mean 1st. (+5�) 2nd. (+5�) 3rd. (+5�) Mask

1st. (�5�) 2nd. (�5�) 3rd. (�5�) 1st. (�5�) 2nd. (�5�) 3rd. (�5�)

Figure 5. The mean together with the first three principle components of the shape (left) and texture (right) PCA model.
Shown is the mean shape resp. texture plus/minus five standard deviations �. Mask with the four manually chosen segments
(eyes, nose, mouth and rest) used in the fitting to extend the flexibility.

Gallery / Probe front side profile mean
front 98.9 % 96.1 % 75.7 % 90.2 %
side 96.9 % 99.9 % 87.8 % 94.9 %
profile 79.0 % 89.0 % 98.3 % 88.8 %
mean 91.6 % 95.0 % 87.3 % 91.3 %

Table 1. Rank 1 identification results obtained on a CMU-
PIE subset. The mean identification rate is 91.3%. With
the former MPI model a identification rate of 89.4% was
obtained.

Gallery / Probe Pose � Identification rate
bb 38.9 97.4 %
bc 27.4 99.5 %
bd 18.9 100.0 %
be 11.2 Gallery
ba 1.1 99.0 %
bf -7.1 99.5 %
bg -16.3 97.9 %
bh -26.5 94.8 %
bi -37.9 83.0 %
bk 0.1 90.7 %
mean 95.8 %

Table 2. Rank 1 identification results obtained on a FERET
subset. The mean identification rate is 95.8%. With the for-
mer MPI model a identification rate of 92.4% was obtained.

Compared with the MPI, the visual quality of the BFM
fitting results (Fig. 6) is much better since the overfit-
ting in the texture reconstruction has been reduced.

Figure 6. Exemplary fitting result for CMU-PIE with BFM
Face Model. Left the original image, middle row the fitting
result rendered into the image and right the resulting 3D
model.

3.2. Face Identification on 3D scans

For the 3D identification experiments, we fit the
BFM to shape data without using the texture. The
fitting algorithm [2] is a variant of the nonrigid ICP
work in [4]. We initialize the fitting by locating the tip
of the nose with the method of [21]. As test set we
use the UND database [9] that consists of 953 unregis-
tered 3D scans, with one to eight scans per subject. As
for the 2D experiments, we measure the similarity be-
tween two faces as the angle between their coe�cients
in Mahalanobis space. The recognition performance
for di↵erent distance thresholds is shown in Fig. 7.

4. Conclusion

We presented a publicly available 3D Morphable
Model of faces, together with basic experiments. The
model addresses the lack of universal training data for

Paysan et al. (2009)



Why should you care about Machine Learning?
Summary

(At least) three broad use cases for ML in cognitive (neuro)science


• Automatisation of time-consuming tasks (annotation, stimuli preparation…) 


• Analysis of experimental data (brain imaging, behavior in the lab, online 
experiments…)


• Development of models of cognitive and neural processes (perception, 
language, decision-making, navigation, memory…)



What is Machine Learning?

What do the examples have in common?


• About generalisation, i.e. learning from experience/examples


‣ That’s statistics 

• What distinguishes machine learning within statistics?


‣ Computational aspect: finding (and applying) ML solutions to problems 
requires a computer



What is Machine Learning?

ML == statistics + computer science 

Central ML concepts: generalisation and algorithms 

Central objectives of ML: finding statistically and computationally efficient 
algorithms to solve generalisation problems



Case study: classification of cat and dog images
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Central objectives of ML: finding statistically and computationally efficient 
algorithms to solve generalisation problems
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approach clusters images based on high-level fea-
tures in the penultimate layer of the neural network.
In this layer, images are represented as a series of
2,048 abstract features, rather than being classified
in one of the thousand classes of ImageNet. This
allows us to group images based on the presence
of specific visual aspects rather than their category.
The third approach demonstrates how retraining
the final classification layer of a neural network
using self-defined categories can be used to analyze
the content of historical images. It demonstrates
how a CNN can be retrained to look for
images that share an explicit visual similarity, such
as weather reports that look almost the same every
day.

3 Data Sets: Images in Digitized
Newspapers

This article focuses on two types of images that
appeared in Dutch newspapers: images that were
part of newspaper articles and images in advertise-
ments.3 We extracted the images from the digitized
newspaper collection Delpher, to which we had
access during our researcher-in-residence projects
at the National Library of the Netherlands (KB).4

In addition to large amounts of textual informa-
tion, the archive also contains a wide range of
visual content.

The first data set, CHRONIC (Classified
Historical Newspaper Images), contains 452,543
images for the period 1860–1930. Because we were
mainly interested in images of the news, we decided
to only include images related to newspaper articles,
thereby excluding the images of the advertisement
sections and discarding relatively small images by
filtering out files with sizes smaller than 30 kB.
CHRONIC holds a wide variety of visual material,
such as illustrations and photographs of news
events, (political) cartoons, images that accompa-
nied feuilletons, but also large numbers of chess
problems and weather reports.

The second data set (SIAMESET) consists of
426,777 advertisements published in two influential
Dutch newspapers, the Algemeen Handelsblad and
NRC Handelsblad, between 1945 and 1995.
Whereas the images of the CHRONIC data set are
separated from the textual content, the advertise-
ments of SIAMESET consist of both visual and text-
ual content. In fact, many advertisements are mostly
text-based. Before we could train a CNN to look for
similarities within images, we, therefore, had to
create a data set of advertisements that contained
a high degree of visual content. We filtered the ini-
tial set, which consisted of 1.6 million advertise-
ments, in two steps. First, we removed images
with a width or height smaller than 500 pixels and
advertisements with dimensions that resembled
classified ads (height of >5,000 pixels and width of
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Loss function

h⇤ 2 argmin
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LD(h)
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Parametrisation of a line
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2
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Search procedure?

- analytic?

- random?

- grid search?

- gradient descent: local search 

by starting from some point in 
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Gradient descent

Figure: https://mathinsight.org/directional_derivative_gradient_introduction
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4.1. CONVEXIFICATION OF THE RISK 65
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Figure 4.1: Classical convex surrogates for binary classification with the 0-1 loss.

4.1.1 Convex surrogates

A key concept in machine learning is the use of convex surrogates, where we replace Φ0−1

by another function Φ with better numerical properties (all will be convex). See classical
examples in Figure 4.1.

Instead of minimizing the classical risk R(g) or its empirical version, one then minimizes
the Φ-risk (and its empirical version) defined as

RΦ(g) = E[Φ(yg(x))].

In this context, the function g is sometimes called the score function.

The key question we tackle in this section is: does it make sense to simply convexify the
problem? In other words, does it lead to good predictions for the 0-1 loss?

Classical examples. We first review the main examples used in practice:

• Quadratic loss: Φ(u) = (u− 1)2, leading to, since y2 = 1: Φ(yg(x)) = (y − g(x))2 =
(g(x)− y)2. We get back least-squares, and we simply ignore the fact that the labels
have to belong to {−1, 1}, and take the sign of g(x) for the prediction. Note the
overpenalization for positive value of yg(x), that will not be present for the other
losses below (which are non-increasing).

• Logistic loss: Φ(u) = log(1 + e−u), leading to

Φ(yg(x)) = log(1 + e−yg(x)) = − log
( 1

1 + e−yg(x)

)
= − log(σ(yg(x)),

where: σ(v) = 1
1+e−v is the sigmoid function. Note the link with maximum likelihood

estimation, where we define the model through

P(y = 1|x) = σ(f(x)) and P(y = −1|x) = σ(−f(x)) = 1− σ(f(x)).

Figure: Learning Theory from First Principles, Bach (forthcoming)

�(x) = � log (�(x))
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Summary

• Why machine learning may be relevant to cognitive scientists


• Automatisation of time-consuming tasks


• Analysis of experimental data


• Development of models of cognitive and neural processes


• What is machine learning about? 


• Designing and implementing computationally efficient statistical procedures


• Classification of cat and dog images


• Two simple algorithms for (image) classification: nearest-neighbor and linear classification


• A simple empirical approach to measuring the statistical and computational efficiency of a 
classification algorithm



Tomorrow

• Python programming basics to prepare Wednesday’s implementation of 
concepts developed in today’s class 


• You will need


• A laptop


• Access to a Google account to connect to google colab (https://
colab.research.google.com/)

https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/


Thank you for your attention

Course material will be available after the class at https://thomas.schatz.cogserver.net/teaching/


